

Systematically Managing Complexity in Power Electronics Modeling and Design

Minjie Chen Princeton University

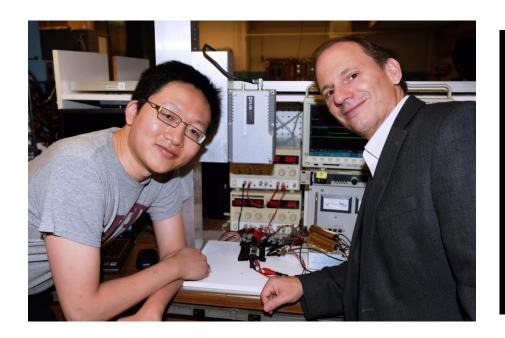
Princeton Power Electronics Research Team

Freedom!

MIMO

LEGO

MagNet


Power + Grid

Power + Robotics

Useless Concepts ???

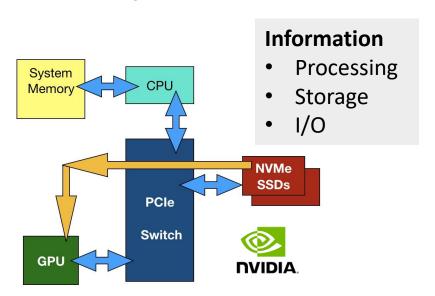
Power Architecture Research, from MIT to Princeton

2010 @ MIT, need a summer project

Minjie: What does power architecture really mean ???

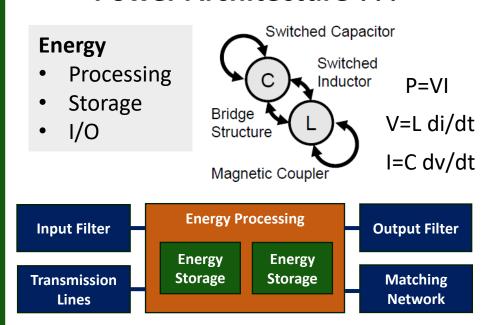
Dave: first increase the complexity, then talk about architecture ...

... **15** years later ... ???


Power architecture:

Theories and methods to manage the complexity in power electronics ...

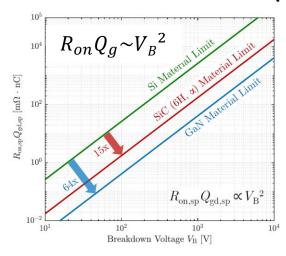
Computer Architecture and Power Architecture



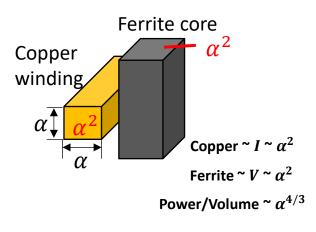
Computer Architecture

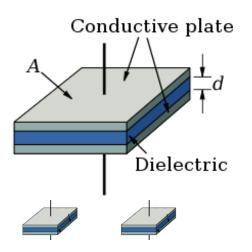
Von Neumann vs. In Memory Computing

Power Architecture ???



Power Architecture: Managing Complexity for Energy Processing, Storage, and I/O


Architecture is about "Scaling Laws" ...

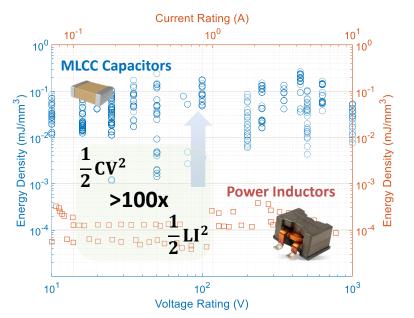

Power Semiconductors (R)

Magnetics (L)

• Capacitors (C)

Smaller switches better

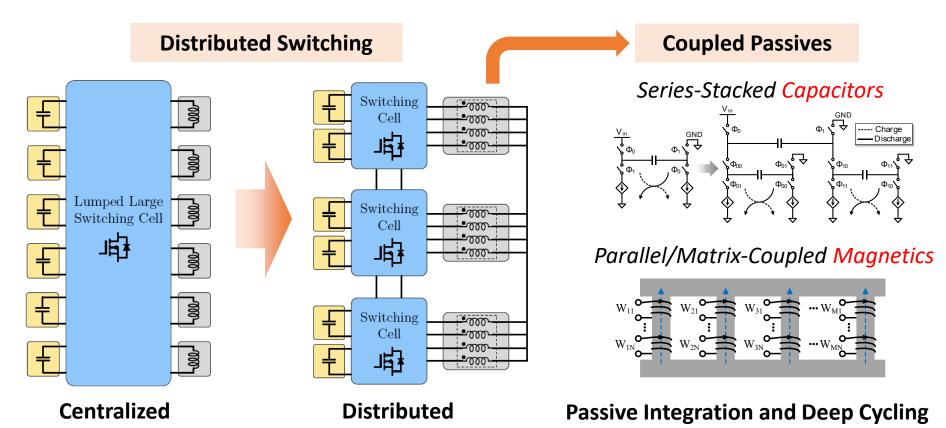
Larger / integrated magnetics better


Capacitors - indifferent

- B. J. Baliga, Fundamentals of Power Semiconductor Devices, ISBN-13: 978-0387473130, 1996.
- C. R. Sullivan et al., "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," 3D-PEIM'16.
- M. Chen et al., "Coupled Inductors for Fast-Response High-Density Power Delivery: Discrete and Integrated," CICC'21.

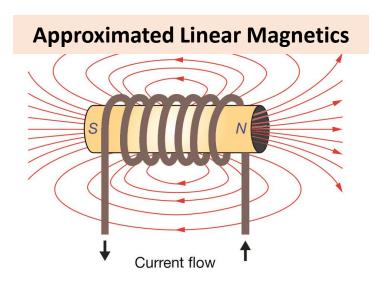
Architecture is about "Memory Technologies" ...

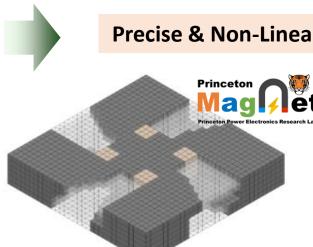
Capacitors: high density, high Q


Magnetics: deep cycling & design flexibility

- C. R. Sullivan et al., "On Size and Magnetics: Why Small Efficient Power Inductors are Rare," 3D-PEIM'16.
- M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters,", TPEL'21 Prize Paper.

Focus #1: Distributed Switching and Coupled Passives





Focus #2: Precise, Non-Linear Models for Passives

- Passives are dominating the size of power electronics (L, C, PZT, Filters ...)
- Most existing models for passives are overly simplified and inaccurate ...
- Precise engineering of passives (material, geometry, design) across wide range

Precise & Non-Linear Magnetics

- Memory effects
- Geometry effects
- Temperature impact
- Waveform impact
- Losses
- Saturation

Embrace and manage the complexity in passive components ...

Architecture is about "Applications" ...

Renewable Energy Systems

Complex, Modular

Power Electronics

Data Center and Computing

Complex Loads

Complex Sources

Grid-Scale Energy Storage

Electro-Manufacturing

Princeton Power Architecture Research Team

Jaeil Baek Assist. Prof. @KAIST

Yenan Chen Prof. @Zhejiang U.

Ping Wang Assist. Prof. @HKUST

Youssef Elasser Nvidia Research

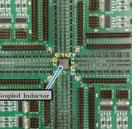
Daniel Zhou Princeton PhD'25

Haoran Li Princeton PhD'25

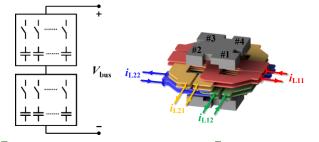
Steven Zeng **Princeton Postdoc**

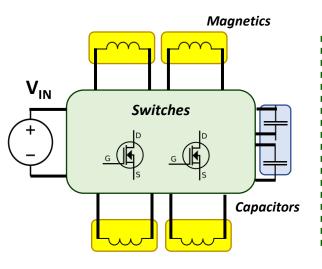
Gyeong-Gu Kang Princeton Postdoc

Shukai Wang Princeton PhD'27

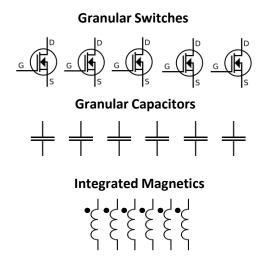

2025

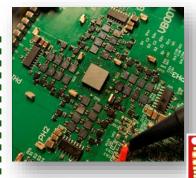
2017

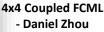




Models 20%

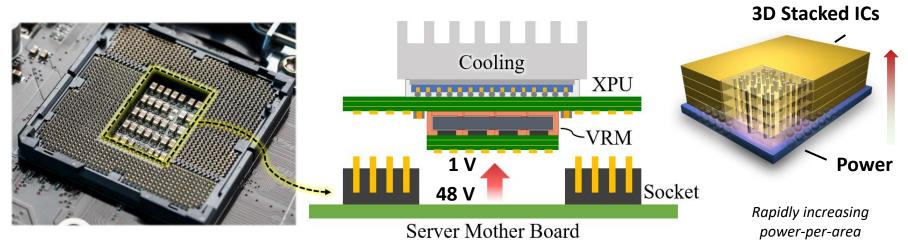

Engineering Circuits: Distributed Power Conversion




Small Building Blocks

Distributed Power Conversion

- Ping Wang

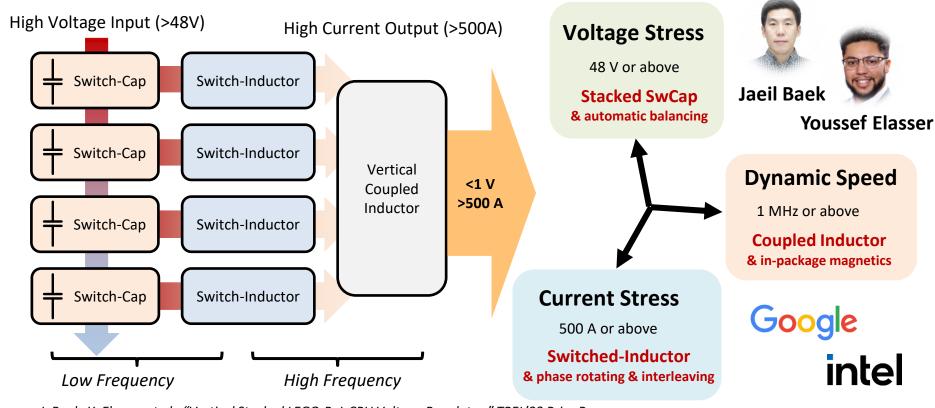


Distributed Switching and Coupled Passives

- 1. Materials + circuits + systems + control + architecture + applications
- 2. Hardware + software + design method + scaling factor + performance limit

Vertical Power Delivery for "High Density Computing" ...

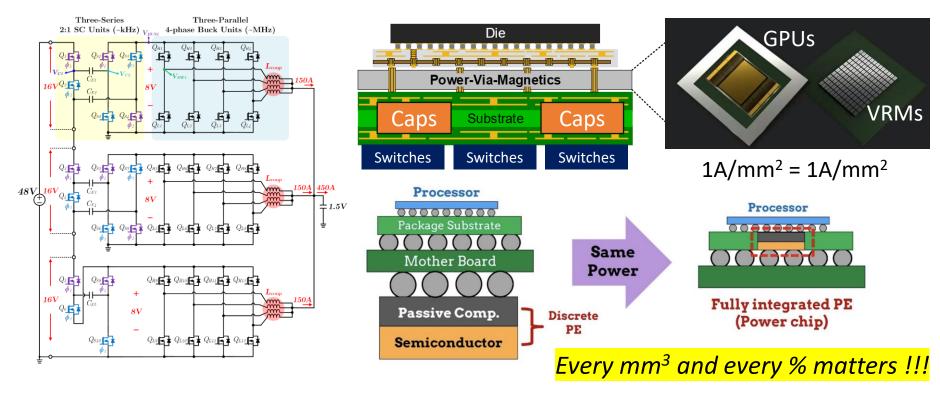
Research Partners


Requirements

400 V / 48 V-1 V >1 A/mm² <3 mm height 500 A~2000 A 10 A/ns >90%

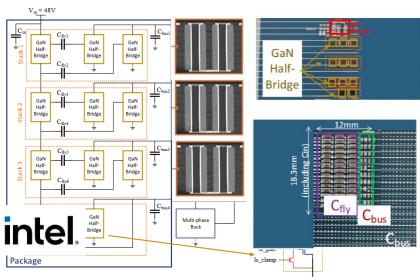
Motivate very high performance with complex architecture, not cost sensitive ...

LEGO Point-of-Load Composite VRM Architecture



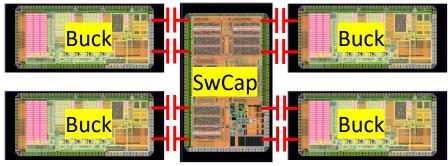
• J. Beak, Y. Elasser et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22 Prize Paper.

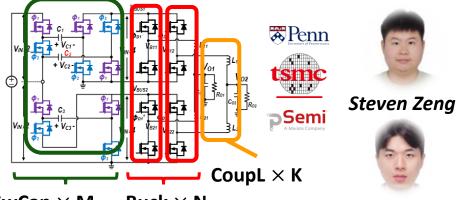
Architecture is about "Packaging" ...



- J. Beak, Y. Elasser et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22 Prize Paper.
- M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," TPEL'21 Prize Paper.

Further Development of the LEGO Architecture

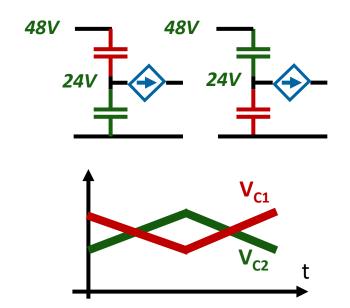

Intel's GaN-LEGO and CoaxMIL Magnetics [APEC'25]

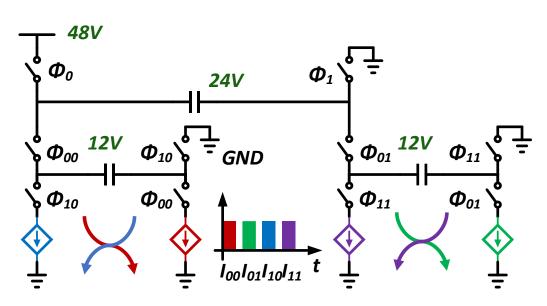

• J. Baek et al., "Fully Integrated Voltage Regulators (FIVRs) with Package In-situ Coupled CoaxMIL Inductor for High Power Density Microprocessor Applications," APEC'25.

[COMPEL'25] Chiplet-LEGO: Delivering Multiple Voltage Rails to Chiplets with Chiplet VRMs Thursday, 11:45am

Princeton Chiplet-LEGO

taped out TSMC 180nm BCD, May 2025


 $Buck \times N$

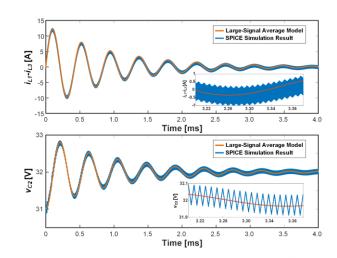

Gyeong-Gu Kang

Architecture is about "Mechanisms" ...

Balancing and Scalable Distributed Architecture

- M. Chen, "Merged-Multi-Stage Power Conversion: a Hybrid Switched-Capacitor Magnetics Approach," MIT Thesis.
- P. Wang et al., "Interphase LC Resonance and Stability Analysis of Series-Capacitor Buck Converters," TPEL'23.
- P. S. Shenoy et. al., "Comparison of a Buck Converter and a Series Capacitor Buck Converter for High-Frequency, High-Conversion-Ratio Voltage Regulators," TPEL'15.

Architecture is about "Modeling and Control" ...



Automatic Current Sharing

Phase1 (\$\phi_1\$) Phase2 (\$\phi_2\$) C_{F3} C_{F5} I_{BUCK3} I_{BUCK3}

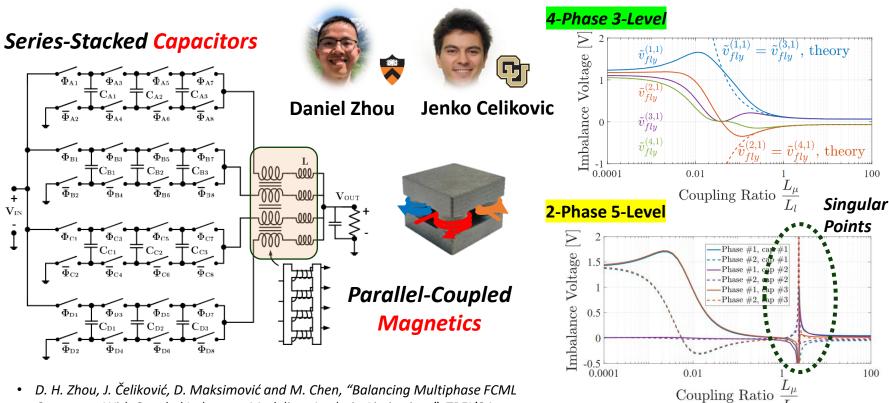
Dynamics of Switched Capacitor Voltages

$$\ddot{\mathbf{X}} + \frac{R}{L}\dot{\mathbf{X}} + \frac{D^2}{4LC}\mathbf{M}\mathbf{X} = 0,$$

$$\ddot{\mathbf{X}} = \begin{bmatrix} \frac{d^2i_{L1}}{dt^2} \\ \frac{d^2i_{L2}}{dt^2} \\ \vdots \\ \frac{d^2i_{LN}}{dt^2} \end{bmatrix}, \ \dot{\mathbf{X}} = \begin{bmatrix} \frac{di_{L1}}{dt} \\ \frac{di_{L2}}{dt} \\ \vdots \\ \frac{di_{LN}}{dt} \end{bmatrix}, \ \mathbf{X} = \begin{bmatrix} i_{L1} \\ i_{L2} \\ \vdots \\ i_{LN} \end{bmatrix},$$

$$\mathbf{M} = \begin{bmatrix} 1 & -1 & 0 & 0 & \cdots & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \cdots & \vdots \\ 0 & 0 & \cdots & -1 & 2 & -1 \\ 0 & 0 & \cdots & -1 &$$

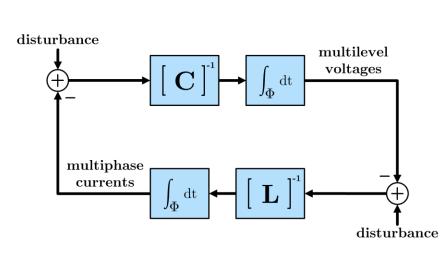
- Soft charging switched capacitors
- Automatic current balancing
- Composite frequency operation

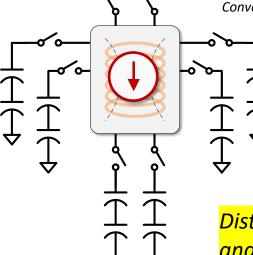


- J. Beak et al., "Vertical Stacked LEGO-PoL CPU Voltage Regulator," TPEL'22 Prize Paper.
- P. Wang et al., "Interphase L-C Resonance and Stability Analysis of Series-Capacitor Buck Converters," TPEL'23.

Jaeil Baek Ping Wang

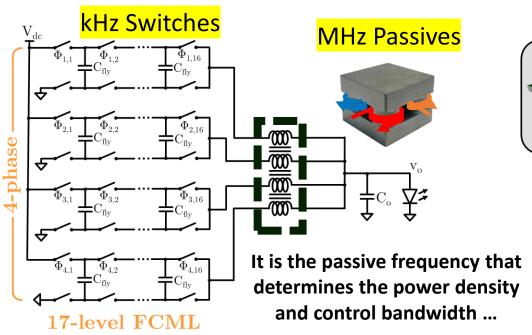
Architecture is about "Co-Design" ...


D. H. Zhou, J. Čeliković, D. Maksimović and M. Chen, "Balancing Multiphase FCML Converters With Coupled Inductors: Modeling, Analysis, Limitations", TPEL'24.

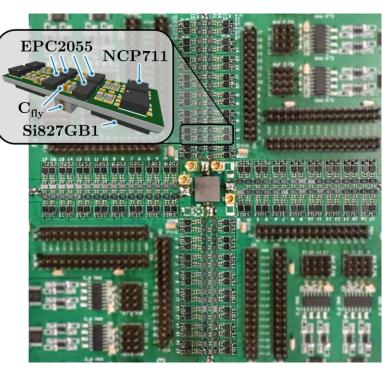

"Simple Theories" for "Complex Systems" ...

- Scalable methods for analyzing passive balancing
- Applicability and limitations of passive balancing
- Design guidelines for L-C and control strategies
- Design guidelines for coupled inductors

- D. H. Zhou and M. Chen, "Balancing Flying Capacitor Multilevel Converters With Coupled Inductors: Multiresonant Dynamics," TPEL'25.
- Z. Xia, K. Datta and J. T. Stauth, "State-Space Modeling and Control of Flying-Capacitor Multilevel DC—DC Converters," TPEL'23.



Daniel Zhou


Distributed Switching and Coupled Passives

Switching Frequency ≠ **Passive Frequency**

[COMPEL'25] "Distributed Switching and Coupled Passives for High Performance Power Electronics" Wednesday, 1:10 PM

64× frequency multiplication

Very Beginning of Power Architecture Research

Gen 1: Canonical Cells

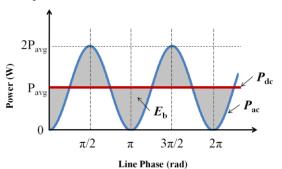
Gen 2: Modular Cells

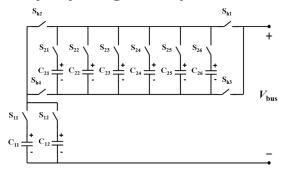
Gen 3: Composite Cells

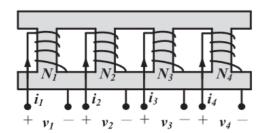
Lots of other power architecture research going on:

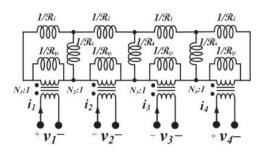
Dartmouth



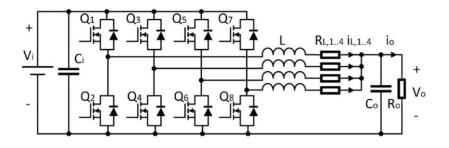


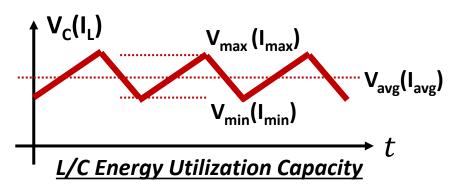

"In-Passive Power-Processing" vs. "In-Memory Computing" VINIVERSITY

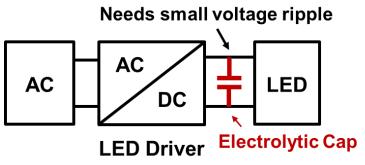

"Capacitors" - Active Buffer and Deep Cycling of Capacitors

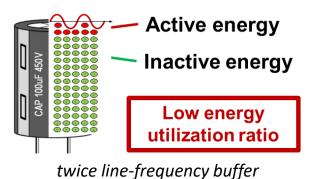


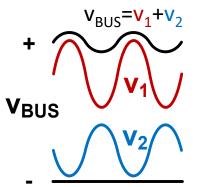
"Magnetics" – Coupling and Deep Cycling of Magnetics



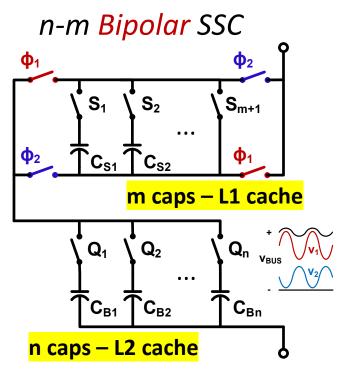

Utilization of Passive Components in Power Electronics




PWM operated Capacitors & Magnetics



Passive Utilization << 50%



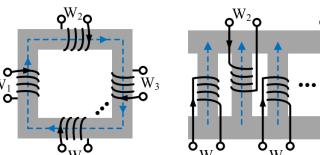
Stacked Switched Capacitor Energy Buffer

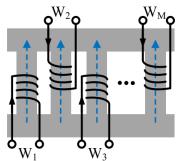
Energy utilization ratio (%) 100 5% ripple n=8 80 n=4 n=2 60 n=140 Usually 3x-5x higher Can always approach 100% 20 Size vs. reliability tradeoff 18% New sustainability angle 5 10 15 Number of **m**

K. K. Afridi

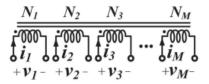
D. J. Perreault

• M. Chen, K. K. Afridi and D. J. Perreault, "Stacked Switched Capacitor Energy Buffer Architecture," TPEL'13.


Invented @

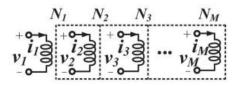

Series Coupling, Parallel Coupling, Matrix Coupling ...

Series Coupled



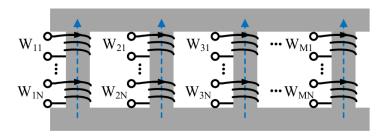
Parallel Coupled

Series Coupled


Voltage Equalizing

KCL:
$$N_1 i_1 + N_2 i_2 + \dots + N_M i_M = 0$$

KVL: $\frac{v_1}{N_1} = \frac{v_2}{N_2} = \dots = \frac{v_M}{N_M}$


Parallel Coupled

Current Equalizing

$$\begin{aligned} & \text{KVL: } N_1 i_1 = N_2 i_2 = \cdots = N_M i_M \\ & \text{KCL: } \frac{v_1}{N_1} + \frac{v_2}{N_2} + \cdots + \frac{v_M}{N_M} = 0 \end{aligned}$$

Matrix Coupled

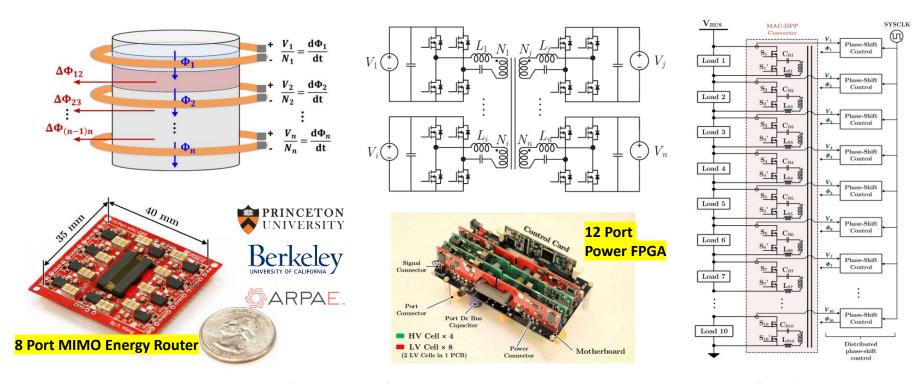
M. Chen and C. R. Sullivan, "Unified Models for Coupled Inductors Applied to Multiphase PWM Converters," TPEL'21 Prize Paper.

Quantified benefits for scalable coupled inductor

$$\gamma = \frac{1 + \beta \Gamma}{1 + \beta}$$

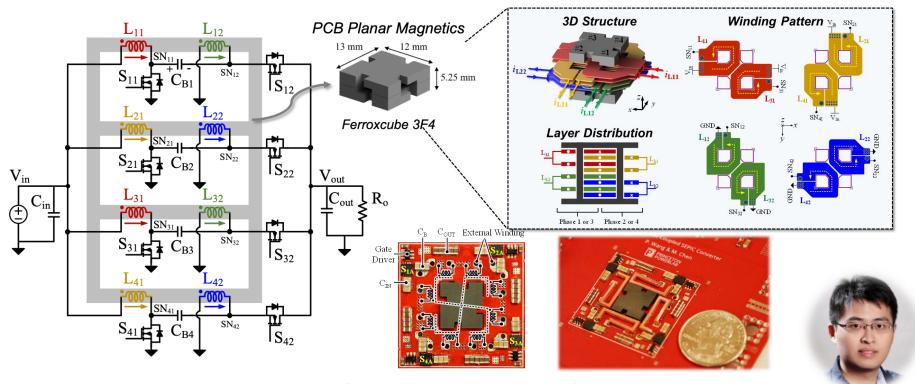
uncoupled
$$\gamma \Big|_{\beta \to 0}$$

$$\underline{\mathsf{fully coupled}} \ \ \boldsymbol{\gamma} \, \Big|_{\boldsymbol{\beta} \to \infty} = \boldsymbol{\Gamma}$$



$$\Gamma = \frac{(k+1-DM)(DM-k)}{(1-D)DM^2}$$

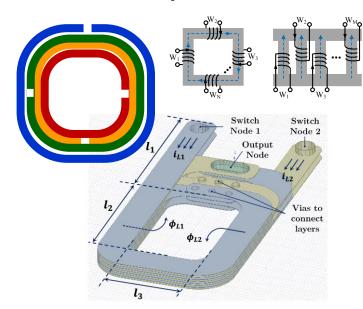
Multi-Winding Magnetics as Multiport Energy Router

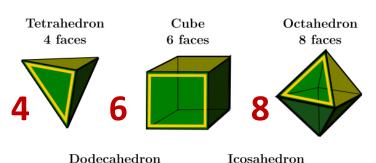


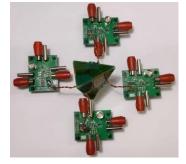
- Y. Chen, P. Wang, Y. Elasser and M. Chen, "Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture," TPEL'20 Prize Paper.
- P. Wang, Y. Chen, J. Yuan, R. C. N. Pilawa-Podgurski and M. Chen, "Differential Power Processing for Ultra-Efficient Data Storage," TPEL'21 Prize Paper.
- M. Liao et al., "Machine Learning Methods for Feedforward Power Flow Control of Multi-Active-Bridge Converters," TPEL'23.

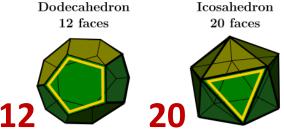
All-in-One Magnetics for High-Order PWM Converters

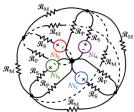
- P. Wang, D. H. Zhou, Y. Elasser, J. Baek and M. Chen, "Matrix Coupled All-in-One Magnetics for PWM Power Conversion," in IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 15035-15050, Dec. 2022.
- S. Cuk, "A New Zero-Ripple Switching DC-to-DC Converter and Integrated Magnetics," IEEE Trans. Magn., 1983.


Ping Wang


Multiphase Air-Coupled Magnetics ...




Series Coupled Air-Core


Parallel Coupled Air-Core (Platonic Geometry)

- T. Sen, Y. Elasser and M. Chen, "Origami Inductor: Foldable 3-D Polyhedron Multiphase Air-Coupled Inductors With Flux Cancellation and Faster Transient," TPEL'24.
- H. Li, W. Zeng, Y. Elasser and M. Chen, "Air-LEGO: A Magnetic-Free Ultra-Thin 24V-to-1V 120A VRM with Air-Coupled Inductors," APEC'25.

Haoran Li

Tanuj Sen

MagNet Project and Data Driven Methods

- **Inductors**
- Capacitors
- **Transformers**
- **EMI Filters**
- Piezoelectric

Website Development

Magnetics Simulation

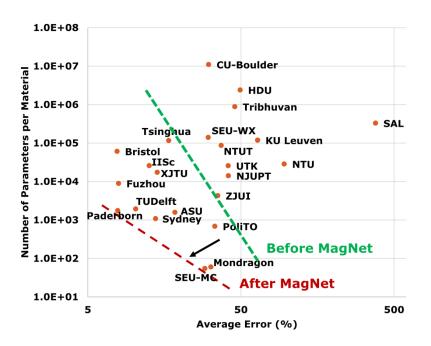
Automatic Data Acquisition

 M. Chen et al., "MagNet Challenge for Data-Driven **Power Magnetics** Modeling," OJPE'24.

MagNet Database

Shukai Wang T. Guillod

Hyukjae Kwon

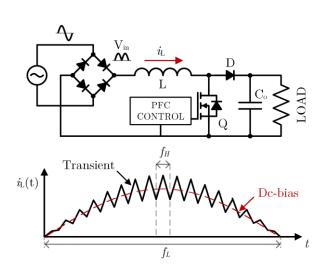

Machine Learning

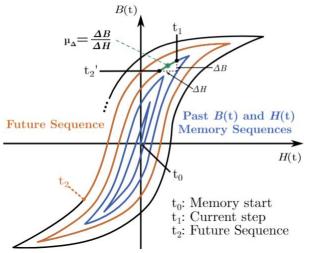
Methods

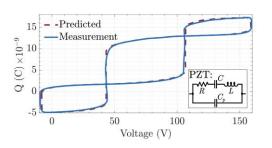
MagNet Challenge 1: Steady State Behavior of Magnetics ...

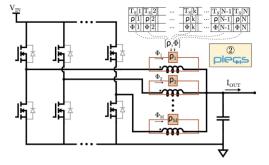
MagNet Challenge for Data-Driven Power Magnetics Modeling

```
MINJIE CHEN 1 (Senior Member, IEEE), HAORAN LI 1 (Graduate Student Member, IEEE),
            SHUKAI WANG 1, THOMAS GUILLOD 2, DIEGO SERRANO 1, NIKOLAS FÖRSTER 3.
      WILHELM KIRCHGÄSSNER 603, TILL PIEPENBROCK3, OLIVER SCHWEINS3, OLIVER WALLSCHEID3
                 QIUJIE HUANG<sup>4</sup>, YANG LI<sup>®5</sup>, YU DOU<sup>6</sup>, BO LI<sup>6</sup>, SINAN LI<sup>®4</sup> (Member, IEEE),
         EMMANUEL HAVUGIMANA 607 (Graduate Student Member, IEEE), VIVEK THOMAS CHACKO7.
SRITHARINI RADHAKRISHNAN<sup>7</sup>, MIKE RANJRAM <sup>10</sup>, BAILEY SAUTER<sup>8</sup>, SKYE REESE <sup>10</sup>, SHIVANGI SINHA<sup>8</sup>
 LIZHONG ZHANG9, TOM MCKEAGUE9, BINYU CUI9 (Graduate Student Member, IEEE), NAVID RASEKH 99,
    JUN WANG 9 (Member, IEEE), SONG LIU9, ALFONSO MARTINEZ 10, XINYU LIU11, CHAOYING MEI 11,
      RUI ZHAO<sup>11</sup>, GAOYUAN WU<sup>11</sup>, HAO WU<sup>11</sup>, RUI ZHANG<sup>12</sup>, HAO SONG<sup>12</sup>, LIE ZHANG<sup>12</sup>, YIBO LU<sup>12</sup>,
     LIJUN HANG <sup>12</sup>, NEHA RAJPUT<sup>13</sup>, HIMANSHU BHUSAN SANDHIBIGRAHA<sup>13</sup>, NEERAJ AGRAWAL<sup>13</sup>,
                             VISHNU MAHADEVA IYER 013 (Senior Member, IEEE),
       XIAOBING SHEN @ 14 (Graduate Student Member, IEEE), FANGHAO TIAN 14, OINGCHENG SUI 14,
             JIAZE KONG14, WILMAR MARTINEZ 114 (Senior Member, IEEE), ASIER ARRUTI 115.
       BORJA ALBERDI @ 15
                                                                                        OSU AIZPURU 0 15
                                                                                        SHEN16, YAN ZHOU16,
   MINMIN ZHANG 016, XI
                                           IEEE Open Journal of
    YAOHUA LI 917 (Gradua
                                                                                        17, YONGBIN JIANG17
                                                                                       DE LI<sup>18</sup>, LI-CHEN YU<sup>18</sup>,
   ZIHENG XIAO17, YI TANC
       TZU-CHIEH HSU18, Y
                                                                                        SSIO GIUFFRIDA<sup>19</sup>
                                                                                       D PASQUALE<sup>19</sup>.
           NICOLO LOMBAI.
         LUIGI SOLIMENE <sup>19</sup> (Member, IEEE), CARLO STEFANO RAGUSA <sup>19</sup> (Senior Member, IEEE),
                   JACOB REYNVAAN20, MARTIN STOIBER20, CHENGBO LI21, WEI QIN 21,
            XIANG MA<sup>21</sup> (Graduate Student Member, IEEE), BOYU ZHANG<sup>21</sup>, ZHENG WANG <sup>© 21</sup>
MING CHENG 021 (Fellow, IEEE), WEI XU 021, JIYAO WANG 021 (Member, IEEE), YOUKANG HU21, JING XU21
ZHONGOI SHI<sup>21</sup>, DIXANT BIKAL SAPKOTA<sup>22</sup>, PUSKAR NEUPANE<sup>22</sup>, MECON JOSHI<sup>22</sup>, SHAHABUDDIN KHAN<sup>22</sup>
       BOWEN SU<sup>05</sup>, YUNHAO XIAO<sup>05</sup> (Graduate Student Member, IEEE), MIN YANG<sup>5</sup>, KAI SUN<sup>05</sup>,
                            ZHENGZHAO LI 023 (Graduate Student Member, IEEE).
   REZA MIRZADARANI 23 (Graduate Student Member, IEEE), RUIJUN LIU 23 (Student Member, IEEE),
          LU WANG 23 (Member, IEEE), TIANMING LUO 23 (Member, IEEE), DINGSIHAO LYU 23,
```


- < 600 parameters to model a material within 20% error across temperature, dc-bias, freq, waveform
- An open-source community with > 200 members developing various software tools for design

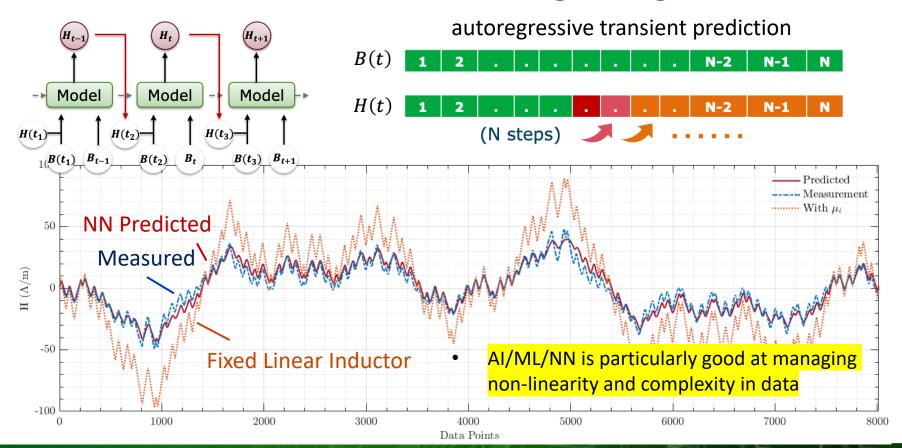

AND CHARLES K. SULLIVAN " (Fellow, IEEE

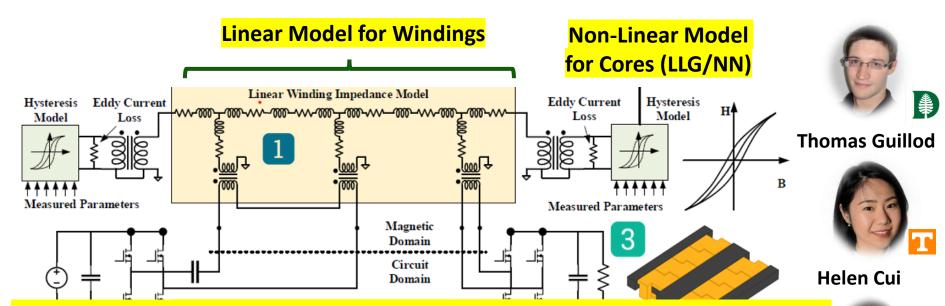



MagNet Challenge 2: Non-linear Transient Models for SPICE VINIVERSITY

Shukai Wang

[COMPEL'25] "Unified Time Domain Foundation **Models for Hysteretic Passive Components**" Wednesday, 11:00 AM


MagNet Challenge 2: Participating Teams and Impact


Data-Driven Models for Transient Modeling of Magnetics

Hybrid Data-Driven Models for Complex Magnetics Design

We almost have everything we need for precise modeling of complex magnetics !!!

- M. Chen, M. Araghchini, K. K. Afridi, J. H. Lang, C. R. Sullivan and D. J. Perreault, "A Systematic Approach to Modeling Impedances and Current Distribution in Planar Magnetics," TPEL'16 Prize Paper.
- S. Dulal, S. B. Sohid, H. Cui, G. Gu, D. J. Costinett and L. M. Tolbert, "A Physics-Based Circuit Model for Nonlinear Magnetic Material Characteristics," APEC'24.

Davit Grigoryan

Summary

Power Architecture Research = Embrace Complexity + Manage Complexity

- There is plenty of room at the top, above topologies.
- There is plenty of room at the bottom, into materials.
- There is plenty of room around the edge, across applications.
- There is plenty of room at the heart, software tools & AI.