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Abstract

The growing demand for high-performance power delivery spans across a wide range

of domains, including data centers, artificial intelligence infrastructure, transporta-

tion electrification, and renewable energy systems. These applications require power

electronics that are not only highly efficient but also extremely compact, often op-

erating under tight thermal and spatial constraints. Among the key components in

these systems, power magnetics frequently become a bottleneck due to their bulky

form factor, considerable core losses, and complex, nonlinear behavior. Their charac-

teristics vary significantly with factors such as frequency, temperature, and dc bias,

making accurate modeling and efficient design particularly difficult using traditional

methods based on empirical formulas and datasheet curves.

This thesis proposes a hybrid method that combines data-driven and model-driven

approaches to better understand and improve magnetic modeling and design. A ma-

jor contribution of this work is the creation of the MagNet database – a large-scale

open-source collection of power magnetic data measured under diverse operating con-

ditions. The database was built from scratch with carefully controlled data quality

and comprehensive coverage of excitation and material conditions. The fundamental

complexity of magnetic materials was investigated using the MagNet database. To

capture the high-dimensional and nonlinear relationships in power magnetics mod-

eling, we develop neural network models including LSTM and Transformer architec-

tures. These models serve as intelligent surrogates for traditional datasheets, offering

accurate, fast, flexible predictions that can be used for material comparison, compo-

nent design, simulation, and system optimization. Based on the MagNet database, we

also launched the MagNet Challenge, a community-driven and worldwide open com-

petition that promotes collaboration and advances in data-driven magnetics modeling.

Building on this modeling foundation, the thesis explores two independent design

directions for magnetic components in high-density power applications. The first fo-

cuses on via-winding magnetics for multiphase coupled inductors design in vertical

power delivery applications, where a hybrid design approach combining finite-element

simulations and data-guided parameter optimization is used to create compact struc-

tures with high current-handling capability. The second presents the Air-LEGO ar-

chitecture, a magnetic-free design based on air-core coupling, which eliminates core

losses and temperature sensitivity while supporting ultra-thin, high-current regula-

tion.

Together, these methods demonstrate how combining machine learning with phys-

ical modeling and innovative design can help overcome long-standing limitations in

power magnetics, enabling more compact, efficient, and reliable power electronics

systems for a wide range of next-generation applications – from advanced computing

infrastructure to electrified mobility and renewable energy.
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Chapter 1

Introduction

1.1 Power Magnetics in Modern Energy Systems

Power electronics form the backbone of modern energy systems, enabling the effi-

cient conversion, regulation, and distribution of electrical power across a vast array

of applications. From renewable energy and electric vehicles to industrial automa-

tion and advanced computing, nearly every domain of modern technology relies on

power electronic converters to bridge different voltage levels, power domains, and load

requirements. As society progresses toward electrification, miniaturization, and dig-

italization, the demand for compact, efficient, and high-performance power delivery

systems continues to escalate.

This demand is especially evident in high-density electronic systems, where enor-

mous amounts of power must be delivered within tight spatial and thermal constraints.

Examples include data centers, modular energy storage systems, high-power optical

systems, and, most prominently, the computing industry. Modern microprocessors,

particularly those designed for artificial intelligence and high-performance computing,

now require power levels approaching kilowatts, with localized current densities ex-

ceeding 1000 A within a few square centimeters of silicon area. These extreme power
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requirements push the limits of conventional converter architectures, calling for new

approaches that can deliver high current quickly, efficiently, and reliably.

Among all components in power electronics systems, magnetic elements – induc-

tors and transformers – play indispensable roles in energy transfer, voltage regulation,

filtering, and isolation. However, they also constitute a primary bottleneck. Mag-

netic components are typically the largest in physical volume, the most difficult to

scale, and a significant source of power loss. Their non-ideal behavior under complex

excitation conditions, strong dependence on environmental factors, and the lack of

accurate, generalizable models make their design both critical and challenging.

To meet the evolving needs of high-density power electronics systems, fundamental

innovations are needed not only in circuit topologies and semiconductor technologies,

but also in the modeling, design, and integration of magnetic components. A holistic

rethinking of magnetics – from material behavior and geometric design to data-driven

modeling and vertical integration – is essential for unlocking the next generation of

high-efficiency, high-density, and scalable power delivery systems.

1.1.1 Emerging Demands and Vertical Power Delivery

The escalating performance of high-end computing platforms – particularly CPUs,

GPUs, and AI accelerators – has pushed the boundaries of power delivery infras-

tructure. These devices operate at low voltages (often below 1 V) but demand in-

creasingly high currents (surpassing 1000 A), requiring voltage regulation modules

(VRMs) that can support both high efficiency and extreme current density within

confined footprints. As power consumption continues to rise in high-density comput-

ing environments, such as data centers, edge AI servers, and advanced mobile systems,

traditional power delivery solutions are straining to meet performance, thermal, and

spatial constraints.
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Conventional VRMs are typically implemented at the printed circuit board (PCB)

level and rely on lateral routing to distribute power to the processor. This approach

introduces substantial parasitic impedance due to the long interconnect paths and

multiple interfaces across the power delivery network (PDN). The resulting I2R losses

not only reduce overall energy efficiency but also exacerbate thermal management

and electromagnetic interference (EMI) challenges. Additionally, the bulky nature

of PCB-level magnetics and passives limits miniaturization and complicates signal

routing, particularly for high-speed interconnects coexisting on the same substrate.

In response to these challenges, the industry has been transitioning toward more

integrated, high-efficiency packaging solutions, most notably vertical power delivery

(VPD) architectures. VPD approaches fundamentally alter the spatial configuration

of power flow, replacing lateral distribution with vertically stacked modules that de-

liver current directly from the package substrate to the die. Such architectures lever-

age advances in 3D integration, including micro-bumps, through-silicon vias (TSVs),

and wafer-level packaging techniques, to enable a high-density, low-impedance path

between the VRM and the load.

A representative VPD implementation is illustrated in Fig. 1.1, which shows an

in-packaging vertically stacked VRM architecture designed to optimize current area

density. Power flows vertically through three tightly integrated functional layers: a

capacitor layer for energy buffering and charge transfer, a semiconductor layer for

high-frequency switching, and a magnetic layer for current filtering and modulation.

This stratified organization enables significant improvements in transient response,

thermal spreading, and PDN efficiency, while also freeing up lateral space for high-

speed signal routing.

Among these layers, the magnetic layer presents the most substantial bottleneck

for further miniaturization and integration. Unlike capacitors and semiconductor

switches, which benefit from continuous scaling in advanced fabrication processes,
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Figure 1.1: Vertically stacked in-package VRM with capacitor, semiconductor, and
magnetic layers enabling high-density power delivery.

magnetic components remain bulky, lossy, and difficult to integrate into thin vertical

stacks. Their design and optimization are also hindered by limited modeling fidelity,

material variability, and a lack of design tools that account for multi-physics, multi-

dimensional operating conditions.

Thus, vertical power delivery systems bring not only new opportunities but also

new constraints, shifting the burden of performance and integration heavily onto the

design of compact, efficient magnetics. Overcoming these challenges is critical for

enabling the next generation of high-performance, power-dense computing systems.

1.1.2 Role of Power Magnetics

Magnetic components – including inductors, coupled inductors, and transformers –

are essential in virtually all power electronic converters. They regulate current, pro-

vide energy buffering, ensure voltage stability, and support soft-switching or resonant

operation. In applications such as vertical voltage regulation modules (VRMs) for

high-performance computing, where extremely high current densities must be deliv-
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ered through compact form factors, magnetics become even more critical. However,

these components also represent the most significant bottlenecks in system miniatur-

ization, efficiency, and design complexity.

One major challenge is size: magnetics are typically the bulkiest components in a

converter. In vertically stacked VRM architectures, for instance, the magnetic layer

often dominates the total system height, as illustrated in Fig. 1.1. The miniaturization

of magnetic components is fundamentally limited by material saturation, required

inductance, and thermal constraints – factors that are increasingly difficult to balance

as current densities rise.

Another key challenge lies in loss mechanisms. Magnetic components introduce

both core losses and copper losses, with core loss being especially sensitive to op-

erating conditions. Unlike semiconductors, whose behaviors are modeled with well-

established physics, magnetic materials exhibit highly nonlinear, hysteretic responses

that vary drastically with factors such as frequency, flux density, temperature, and

dc bias. This makes modeling and prediction extremely difficult.

Figure 1.2 shows representative examples of measured B–H hysteresis loops under

different conditions for ferrite materials. These loops illustrate how drastically the

magnetic behavior can change depending on frequency, excitation amplitude, wave-

form shape, temperature, and dc bias. Each subfigure isolates a single variable while

holding others roughly constant. Even under controlled laboratory settings, the ma-

terial characteristics shift in complex ways, demonstrating the multi-dimensional and

intertwined nature of the influencing factors. In real-world applications, these con-

ditions often co-exist and vary simultaneously, making it impractical to use static

models or isolated measurements for accurate design.

Conventional modeling approaches, such as the Steinmetz Equation and its vari-

ants (e.g., iGSE, i2GSE) shown in Table 1.1, can capture loss trends for simple wave-

forms under limited conditions, but they fail to account for waveform distortion,
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Figure 1.2: Examples of measured B–H loops for ferrite materials under different
conditions.

temperature effects, or history-dependent behavior. These empirical models also lack

the flexibility to generalize across multiple devices, materials, and operating regimes.

In summary, the fundamental importance of magnetics is accompanied by deep-

rooted challenges: physical constraints on miniaturization, significant and condition-

sensitive losses, and a lack of accurate, generalizable models. These challenges have

slowed progress in developing compact, efficient, and high-speed power delivery solu-
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Table 1.1: Number of Parameters used by Core Loss Models

Method Core Loss (PV ) #Param.

SE kfαB̂β 3

iGSE 1
T

∫ T

0
ki|dBdt |

α(∆B)β−αdt 3

i2GSE 1
T

∫ T

0
ki|dBdt |

α(∆B)β−αdt+ Σn
l=1QrlPrl 8

ML Neural Network ≫100

tions. In the next section, we examine the limitations of current modeling techniques

in more detail and explore why a new modeling paradigm is urgently needed.

1.1.3 Challenges in Magnetics Modeling and Designing

The modeling and design of magnetic components have long been recognized as one

of the most intricate and underdeveloped areas in power electronics. Unlike semicon-

ductors – whose behaviors can be described by relatively complete physical models –

magnetic materials exhibit complex, nonlinear, and history-dependent responses that

defy simple analytic descriptions. This complexity significantly impedes accurate

prediction and efficient design.

Traditional design workflows for power magnetics heavily rely on manufacturer

datasheets, which typically provide only a limited set of parameters under narrow op-

erating conditions. These datasheets might include static B–H loops, low-frequency

permeability curves, or loss charts for sinusoidal waveforms at select temperatures.

However, in real applications, waveforms are often non-sinusoidal (e.g., triangular or

trapezoidal), and devices operate under varying temperatures, flux densities, and dc

biases. These interdependent factors can drastically affect both permeability and core

loss behavior, but are seldom captured comprehensively in datasheets. As a result,

designers must either rely on coarse safety margins – leading to oversized and inef-

ficient designs – or engage in repeated prototyping and empirical tuning, which is

time-consuming and costly.
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Empirical models, such as the Steinmetz Equation (SE) and its variants (e.g.,

iGSE, i2GSE), offer modest improvements over static datasheets by estimating losses

under more complex waveforms. Yet, these models are still built upon fitting limited

datasets, often with fixed assumptions and oversimplified dependencies. They lack

generalizability across materials and operating regimes, and provide little insight into

parameter sensitivity or model reliability. Their inability to systematically incorpo-

rate multi-dimensional dependencies like temperature, waveform shape, and dc bias

remains a major barrier.

Another critical limitation in this field is the scarcity of standardized, high-quality,

and large-scale datasets for magnetic materials. Most existing models are developed

on proprietary or unpublished data, making it difficult to reproduce results, compare

methodologies, or drive innovation. This lack of open, diverse datasets hampers

the development of robust and generalizable modeling frameworks, and stifles the

application of modern data-driven techniques.

In recent years, the rise of machine learning – especially neural networks – has

opened up a transformative opportunity. These models are capable of capturing

highly nonlinear, multi-variable relationships by learning directly from data, without

the need for rigid analytic expressions. In the context of magnetic modeling, neural

networks offer the potential to unify the effects of waveform shape, amplitude, fre-

quency, temperature, and dc bias within a single framework. They can interpolate

across observed conditions and, with sufficient data and structure, even extrapolate

to unseen ones.

Figure 1.3 illustrates the emerging concept of a “neural network as datasheet” – a

trained neural network that replaces traditional loss charts and lookup tables. Such

a model can store and retrieve B–H behavior under arbitrary conditions, providing

designers with real-time feedback and enabling advanced optimization and co-design

flows. In contrast to empirical models with fixed form and limited adaptability,
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Figure 1.3: Concept of neural network as datasheet.

neural networks can evolve with new data, improve prediction accuracy, and offer

unprecedented modeling flexibility.

Nonetheless, data-driven modeling also brings new challenges. Acquiring large

and diverse datasets with reliable ground truth requires extensive measurement in-

frastructure and calibration. Model interpretability, consistency with physical laws,

generalization, and integration into design tools are all active areas of research. Yet,

despite these hurdles, the direction is clear: machine learning is poised to become a

central pillar in next-generation power magnetics design.

In this work, we build upon this paradigm by developing hybrid modeling ap-

proaches that combine domain knowledge with machine learning, and demonstrate

their application to real-world magnetic design challenges. From fundamental mod-

eling to component optimization, data-driven methods offer a pathway to close the

long-standing gap between magnetic theory and practical design.
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1.2 Contributions and Thesis Organization

The continual evolution of high-performance computing systems has created unprece-

dented demands for efficient, compact, and scalable power delivery. Meeting these de-

mands requires not only architectural innovations such as vertically integrated VRMs,

but also fundamental breakthroughs in the modeling and design of magnetic com-

ponents. This thesis addresses these challenges through a data-driven and hybrid

approach to magnetic modeling and component design, with contributions spanning

three major areas.

Chapter 2 investigates data-driven methods for power magnetics modeling. Con-

tributions include:

� A fully automated magnetic measurement and data acquisition platform is de-

veloped, enabling the generation of a large, diverse, and high-quality database

– MagNet – comprising over 500,000 experimental datapoints across various

magnetic materials and excitation conditions.

� Data quality control and dataset structuring methods are introduced to ensure

the reliability and representativeness of the collected measurements.

� Multiple neural network-based modeling frameworks are proposed, including

LSTM and Transformer architectures, to capture nonlinear magnetic behaviors

such as B–H loops and core losses across wide operating ranges with high

accuracy.

� Transfer learning techniques are applied to reduce the data requirement for new

materials while maintaining high model fidelity, promoting model generalization

and reuse.

� The “Neural Network as Datasheet” paradigm is demonstrated via the MagNet-

AI online platform, which supports rapid material prediction, comparison, and
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selection, laying the foundation for integrating learned models into future design

workflows.

Chapter 3 presents design methodologies for ultra-thin, multiphase coupled in-

ductors tailored for vertical power delivery. Contributions are summarized as:

� A novel via-winding structure is proposed to achieve low interconnect impedance

and efficient vertical current conduction in tightly stacked packages.

� A systematic design and optimization framework is introduced to co-optimize

core shape, winding path, and phase arrangement under compact packaging

constraints.

� Two practical prototypes with pinwheel magnetic cores and up to 160 A total

current capacity are designed and fabricated, achieving power densities of up to

3,960 W/in3 and efficiency exceeding 93% at 2 MHz.

� Experimental validation is performed in a four-phase buck VRM module,

demonstrating the feasibility of high-density, low-loss magnetics for next-

generation 3D-integrated converters.

Chapter 4 explores the design and implementation of magnetic-free, air-coupled

inductors for modular VRM systems. Contributions include:

� Air-core coupled inductors are designed and implemented using both PCB and

Litz-wire windings, offering EMI-friendly packaging, relaxed thermal design,

and magnetic-free integration.

� Experimental comparison of different winding technologies is conducted, vali-

dating the performance and trade-offs of air-coupled designs.

� A complete Air-LEGO VRM prototype is developed and tested, demonstrat-

ing the viability of magnet-free packaging for future high-current, low-profile

applications.
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Finally, Chapter 5 summarizes the thesis and discusses future research directions.

These contributions collectively aim to bridge the longstanding gap between magnetic

component modeling and power electronics system integration by leveraging data-

driven techniques, hybrid design methodologies, and practical prototyping.
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Chapter 2

MagNet: Machine Learning Framework

for Modeling Power Magnetic Material

2.1 Background and Motivation

Magnetic components such as inductors and transformers are indispensable in nearly

all power electronics systems. However, these components often represent a bottleneck

in achieving higher power density and efficiency, primarily due to their substantial

physical volume and significant power loss. Although the field has witnessed rapid

progress in power semiconductor devices and converter architectures, the modeling

and design methodologies for power magnetic components and materials have not

kept pace [1–5].

A critical barrier in magnetic component design is the challenge of accurately

modeling magnetic material behavior, especially under real-world operating condi-

tions that involve complex, non-sinusoidal excitations. Hysteresis behavior in mag-

netic cores arises from highly nonlinear and history-dependent excitation-response

mechanisms, influenced by multiple factors including frequency, temperature, dc bias,

and magnetic memory effects, as depicted in Figure 1.2 and detailed in 2.1. These

interacting influences are difficult to model accurately using existing analytical or

physics-based techniques [6]. Although empirical models like the Steinmetz Equa-
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Figure 2.1: Examples of B–H loops measured with N87 ferrite material under 50%
duty ratio triangular excitations. The reference loop (blue) is measured at 200 kHz,
25 ◦C, and 0 A/m dc bias. Each of the three figures shows the variation of B–H
loop at different frequencies, temperatures, and dc biases, respectively. The B (only
ac) waveform is extracted from voltage measurement, and the H (both ac and dc)
waveform is extracted from current measurement.

tion and its extensions [7–9] or physics-informed models such as the Jiles-Atherton

model [10] have been widely used, they typically make strong assumptions (e.g., si-

nusoidal waveforms, fixed temperatures) that limit their general applicability and

accuracy.

In practice, designers often rely on manufacturer-provided datasheets or interpo-

lated loss maps, which are based on limited datasets and constrained operating con-

ditions. These datasheets are typically valid only for specific excitation types (e.g.,

sinusoidal) and do not provide sufficient information for predicting performance un-

der realistic operating conditions encountered in power converter applications. Even

online datasets provided by vendors, while more comprehensive, grow exponentially

in size with the number of influencing parameters and are difficult to incorporate into

modeling tools due to their unstructured format and complexity in extraction.

Recent developments in data-driven modeling – particularly neural networks and

other machine learning techniques – offer a promising solution to these challenges.

Neural networks have proven effective in capturing nonlinear, multivariable dependen-

cies across a range of disciplines [11–14], and have also been explored in the context

of magnetic hysteresis modeling [15–23]. However, most of these studies have used
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Figure 2.2: Overview of the MagNet framework: from data engineering, model devel-
opment, to magnetics design tool.

limited datasets, simplistic network architectures (e.g., simple feedforward neural net-

works, FNNs), or lacked robust evaluation on diverse operating conditions.

This chapter presents a systematic approach toward data-driven modeling and

design of power magnetics, emphasizing neural network-based hysteresis modeling.

Figure 1.3 illustrates the core concept: rather than relying on traditional static

datasheets, a neural network can effectively serve as a dynamic, high-resolution

“datasheet” by learning to predict the B–H hysteresis behavior across a wide range

of conditions. This approach allows magnetic components to be characterized as a

function of multiple variables – such as amplitude, frequency, temperature, and dc

bias – thereby enabling accurate and efficient design decisions.

To enable this modeling approach at scale, we propose the MagNet framework –

an open-source, large-scale data infrastructure and modeling pipeline for power mag-

netics. Figure 2.2 shows an overview of this framework, encompassing data collection,

preprocessing, neural network training, and integration with magnetics design work-

flows. The goal of MagNet is to provide a common ground for evaluating different

42



3. MagNet: Machine Learning Framework for Modeling Power Magnetic Material

magnetic materials, modeling techniques, and design tools – much like how ImageNet

has propelled progress in computer vision [14]. Both equation-based and data-driven

models rely fundamentally on the quality and breadth of underlying datasets. By

standardizing and expanding this foundation, MagNet seeks to advance the design

and optimization of magnetic components for next-generation power electronics sys-

tems. The major contributions are summarized as follows:

� MagNet Platform Development: We introduce MagNet, an open-source, large-

scale data acquisition and modeling platform tailored for power magnetics re-

search. The system includes detailed hardware-software integration for auto-

matic hysteresis loop and core loss measurement, along with robust data quality

evaluation and control mechanisms.

� Unified Machine Learning Workflow: An end-to-end data-driven workflow is

developed to model magnetic material behavior under various excitation and

environmental conditions. This includes scalar-to-scalar core loss modeling,

sequence-to-sequence hysteresis loop prediction, and sequence-to-scalar map-

pings, which unify the effects of waveform shape, amplitude, frequency, temper-

ature, and dc bias.

� Neural Network as Datasheet: We propose the concept of using neural networks

as dynamic, high-resolution datasheets for magnetic materials. Compared to

traditional datasheets or tabulated datasets, neural networks enable more accu-

rate, compact, and interpretable material characterization for component design

and optimization.

� Advanced Training Techniques: Several techniques are introduced to improve

modeling efficiency and generalization capability. These include systematic data

augmentation, transfer learning to reduce the required dataset size, and archi-
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tectural exploration across different neural network topologies to balance accu-

racy and computational cost.

� Online Platform and Material Recommendation: The MagNet-AI platform is

demonstrated as a web-accessible research tool, supporting neural-network-

aided material recommendation for rapid magnetic design prototyping. This

validates the applicability of learned models in real-world design workflows.

2.2 Automated Data Acquisition System

High-quality, large-scale datasets are essential to the success of machine learning and

data-driven modeling frameworks, as the performance and generalizability of the re-

sulting models are fundamentally limited by the data used for training. In the context

of power magnetics, this requirement becomes especially challenging due to the wide

range of parameters that influence magnetic behavior. Characteristics such as core

loss and hysteresis loop shape are highly sensitive to a number of interrelated factors,

including excitation frequency, peak flux density, waveform shape, dc bias, and ambi-

ent temperature. The multidimensional nature of these inputs creates an expansive

parameter space that must be explored in order to obtain sufficiently representative

data.

To meet this need, a fully automated measurement system is required – one that

can reliably characterize magnetic behavior across the full span of operating condi-

tions while maintaining high repeatability and accuracy. Automating the measure-

ment process not only accelerates data collection, but also minimizes errors intro-

duced by human operation, which is particularly important for the consistency of

time-domain waveforms and derived loss metrics.

A widely used approach for characterizing magnetic materials is the two-winding

or voltamperometric method [24–26], which we adopt in this work. This method
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Figure 2.3: Overview of the automated data acquisition system of MagNet.

utilizes two separated windings on the magnetic core: an excitation winding and a

sensing winding. The excitation current applied to the primary winding is used to

compute the magnetic field strength H, while the voltage induced in the secondary

winding is used to determine the magnetic flux density B. Since the secondary wind-

ing is isolated from the resistance and leakage inductance of the primary, this setup

ensures accurate measurement of B under high-frequency excitations [25].

Figure 2.3 provides an overview of the developed automated data acquisition sys-

tem. The system consists of a programmable power stage capable of synthesizing a

wide range of excitation waveforms, a test fixture for the device under test (DUT),

voltage and current sensing paths, an auxiliary dc-bias injection stage, and a thermal

control unit. These subsystems are integrated into a software-controlled measurement

pipeline, enabling large-scale, multi-condition testing with minimal user intervention.

The physical implementation of the testbench is shown in Fig. 2.4, which captures

both the experimental station and the circuit configuration used for magnetic core

45



3. MagNet: Machine Learning Framework for Modeling Power Magnetic Material

Figure 2.4: Experiment setup and circuit configuration of the magnetic core loss data
acquisition system of MagNet.

characterization. The design supports waveform customization, rapid DUT swap-

ping, and temperature variation, forming the basis for scalable and repeatable data

generation.

In the implemented MagNet system, the excitation applied to the magnetic core

is synthesized and generated using two methods depending on the desired waveform

shape. For non-sinusoidal excitations – such as triangular, trapezoidal, or arbitrary

periodic waveforms – a T-type inverter is employed in the power stage to enable flex-

ible and accurate waveform generation across a broad frequency range. For purely

sinusoidal excitation, a power amplifier driven by a function generator is used to

ensure high-fidelity low-distortion waveforms suitable for frequency-domain charac-

terization.
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The core responses are captured by measuring both the voltage across the sec-

ondary winding and the current through the primary winding. Voltage sensing is

performed directly across the secondary, while current sensing utilizes a wide-band

coaxial shunt resistor placed in the primary path to ensure accurate current measure-

ments even under high-frequency excitation. To explore the behavior of magnetic ma-

terials under dc-biased conditions, an optional bias injection circuit is implemented

to superimpose a dc current onto the ac excitation. Only the dc component of the

magnetic field strength, Hdc, is recorded during this operation.

To support temperature-dependent studies, the setup integrates a thermal control

subsystem consisting of an external water heater, a water tank, and an oil bath

enclosure. This enables controlled heating of the DUT and allows measurements to

be conducted over a wide temperature range.

A host PC runs a dedicated software suite to coordinate the entire measure-

ment process. This system handles waveform generation, device control, data acqui-

sition, and logging, enabling fully automated execution of parameter sweeps across

frequency, amplitude, bias level, and temperature. More detailed descriptions of the

system hardware, instrumentation, and software control structure are provided in

Appendix A.

Once the experiment is triggered, the system automatically applies the pro-

grammed excitation waveforms and records the voltage and current signals. The key

magnetic characteristics – namely, the B–H loop and the core loss – are extracted

based on the classical voltamperometric method [24, 27–29]. The core loss per unit

time is calculated using the instantaneous power integration:

Ploss =
1

NT

∫ t0+NT

t0

vL(t) · iL(t), dt (2.1)

The magnetic flux density B(t) is reconstructed from the secondary-side voltage

by time integration:

47



3. MagNet: Machine Learning Framework for Modeling Power Magnetic Material

B(t) =
1

Ae · n2

∫
vL(t), dt (2.2)

The magnetic field strengthH(t) is obtained from the measured excitation current:

H(t) =
n1

le
· iL(t) (2.3)

where vL(t) and iL(t) are the measured secondary voltage and primary current, re-

spectively; n1 and n2 are the number of turns in the primary and secondary windings;

Ae is the effective cross-sectional area, and le is the effective magnetic path length

of the core, which can be acquired from the component datasheet. The measure-

ment duration NT is selected to ensure that a complete number of waveform periods

is captured, eliminating transient artifacts and enabling precise loss and loop shape

calculations.

With the described system, each measurement cycle takes approximately 1.5 sec-

onds to complete. Although the actual waveform duration used for measurement is

only 100 µs, additional time is allocated for control commands, hardware commu-

nication, and allowing the magnetic material to reach electrical steady state. This

deliberate pacing also helps avoid unintended self-heating of the core, which could

otherwise compromise measurement consistency. As a result, the system is capable

of autonomously collecting up to 2,400 data points per hour without human inter-

vention. A full characterization sweep for a single magnetic material typically takes

several hours to complete.

For some magnetic materials, however, additional precautions may be necessary.

Certain materials exhibit strong magnetic memory or thermal relaxation behavior,

which requires extended time between consecutive excitations, as well as tailored

waveform ramp-up and ramp-down procedures to restore the core to a demagnetized

or repeatable initial state. In such cases, measurement throughput may be reduced.
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Therefore, it is essential to pre-characterize and understand the behavior of the target

material to determine appropriate measurement intervals before initiating large-scale

data collection.

While the two-winding voltamperometric method was adopted in this work due

to its speed, flexibility, and ease of automation, other methods exist for core loss

measurement with potentially higher accuracy. For instance, the calorimetric method

[30] measures thermal energy dissipation directly and provides highly accurate loss

characterization, especially at high frequencies. Similarly, the resonant two-winding

method [27] utilizes resonant circuits to minimize measurement errors and achieve

better resolution in certain regimes.

However, these alternative techniques often involve significant calibration effort

– such as establishing thermal equilibrium or tuning resonant tanks – and are typi-

cally less amenable to automation. Consequently, they are not well suited for high-

throughput, large-scale database generation. The choice of the two-winding method

in this system thus reflects a balance between measurement accuracy, automation

feasibility, and dataset scalability. By operating within a carefully constrained mea-

surement range and implementing rigorous quality control procedures (discussed in

Section 2.3), the MagNet platform achieves both efficient data acquisition and reliable

measurement accuracy at scale.

2.3 Data Quality Control

In data-driven modeling, the accuracy of the results heavily depends on both the size

and quality of the dataset. The model accuracy is inherently bounded by the precision

and reliability of the data collected during experiments. When measuring the B–

H loops and core losses of magnetic materials across a broad range of operational

conditions, it is crucial to account for a variety of error sources. These errors can arise

from several factors including parasitics, oscilloscope limitations, timing skew between
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channels, the behavior of microcontrollers, electrical noise, quantization noise, and

temperature fluctuations. The real-time measured voltage and current signals can be

described as:

vL(t) = GV (V0 + VDC + vAC(t))

iL(t) = GI(I0 + IDC + iAC(t− θ))

(2.4)

Here, GV and GI represent the gain factors for voltage and current measurements,

respectively. V0 and I0 are the constant offsets in the voltage and current signals. VDC

and IDC represent the dc components in the voltage and current, while vAC and iAC

are the ac components in the steady state. The term θ indicates any time skew

between the voltage and current measurements. These variables account for all the

discrepancies that can influence the measurement accuracy, especially in the context

of power loss calculations.

Based on Eq. (2.1), the average power loss across N cycles can be expressed as:

Ploss =
1

NT

∫ t0+NT

t0

vL(t) · iL(t) dt

=GVGI(V0I0 + V0IDC + VDCI0)

+GVGIVDCIDC

+
GVGI

NT

∫ t0+NT

t0

vAC(t) · iAC(t− θ) dt

(2.5)

Equation (2.5) provides insight into the errors associated with various factors such

as gain (GV and GI), offsets (V0 and I0), dc and ac components, and the timing skew.

Errors in these variables can lead to significant discrepancies in core loss estimation.

For example, as illustrated in Fig. 2.5, even minor errors in voltage or current mea-
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Figure 2.5: Example measured voltage, current, and power waveform of TDK N87
ferrite material at 100 kHz.

surements, or a phase mismatch between them, can result in substantial errors in the

calculated power loss.

All equipment used in the data acquisition system undergoes extensive calibra-

tion to minimize these errors. For instance, the oscilloscope is calibrated against a

digital multi-meter, with a relative error of 0.25% for dc voltage and 0.67% for RMS

ac voltage. Before each measurement iteration, auto-calibration of the oscilloscope

ensures that zero-drift offsets are minimized, and the voltage and current channels are

deskewed. Additionally, parasitic elements introduced by the power stage and cable

connections are minimized, by carefully laying out the PCB boards and configuring

the measurement platform, to reduce the potential time skew between voltage and

current measurements. More details are provided in Appendix B.

A model-driven method that combines physics-based virtual measurements and

Monte Carlo simulations is employed to quantify the measurement error and estimate

its distribution. The analysis of the systematic and statistical errors helps to refine the

measurement range and ensures high data quality. Specifically, the study identifies

the significant impact of geometry variations on core loss, as described in [6], where
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the maximum geometry-to-geometry variation of core loss density can exceed 10%, a

larger influence than most other sources of error.

Moreover, a data-driven algorithm is developed to detect and remove anomalous

outliers from the collected dataset. Given the large scale of data collected in an

automated fashion, it is inevitable that some erroneous data points will be present.

The algorithm evaluates the smoothness of the measured data points within a specified

range of flux density and frequency by curve-fitting the local Steinmetz Equation. For

each data point, an expected value of core loss is inferred from adjacent points, and

the discrepancy between the expected and measured values is computed. Data points

that exhibit significant discrepancies are flagged and removed from the dataset. This

process ensures that the dataset remains clean and reliable for model training. Further

details on the data quality control process can be found in Appendix B.

By incorporating these rigorous data quality control measures, the database de-

veloped for power magnetics research remains highly accurate, reliable, and suitable

for training robust machine learning models.

2.4 Database Construction

The fully automated data acquisition system allows for the rapid and efficient mea-

surement of B–H loop data, capturing the magnetic material’s behavior under differ-

ent excitation waveforms. Figure 2.6 shows four examples of measured voltage and

current waveforms, which include sinusoidal, triangular, symmetric trapezoidal, and

asymmetric trapezoidal waveforms, all measured with N87 ferrite material at 100kHz.

The sampling time step for each waveform sequence is set to 8 ns, and each sequence

contains 10,000 sampling points for a 100 µs measurement period.

Accurate and well-documented data is essential for making effective use of the

collected information. Figure 2.7 illustrates the current data format of the MagNet

database, which is structured into three main data domains:
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Figure 2.6: Example voltage and current waveforms of sinusoidal, triangular, sym-
metric trapezoidal, and asymmetric trapezoidal excitations.

� DUT Information: This includes the material type and geometry parameters of

the device under test (DUT).

� Raw Measured Data: This domain contains the voltage, current, and the cor-

responding time stamps of the measured time-series data.

� Post-processed Data: This includes derived quantities such as the frequency,

peak flux density, dc bias, duty ratio, temperature, volumetric power loss, and

the single-cycle B–H loop sequences.
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Figure 2.7: Data format of the MagNet database with four different types of contents.

Due to the resolution of the digital micro-controller, there might be slight devia-

tions between the actual signal frequency and the configured frequency. To calculate

the actual frequency of the signals, the data is processed using Welch’s method [31],

which estimates the power spectral density of the signal. The frequency with the

highest power spectral density near the commanded frequency is identified as the

fundamental frequency. The flux density is calculated by integrating the voltage sig-

nal, using the geometry parameters of the DUT. The duty ratio is detected based on

the zero-crossing point for each section of the waveform.

The single-cycle B–H loop data is generated by averaging the different periodic

sections of the waveform across the entire sequence, in order to mitigate the statistical

error in the measurement. A 100-step interpolation is then applied to the averaged
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Table 2.1: Number of Data Points Currently in the MagNet Dataset

Material Sine Tri. Trap. Total

TDK N27 1,612 13,480 27,856 42,948
TDK N30 741 4,254 9,139 14,134
TDK N49 1,392 13,591 26,185 41,168
TDK N87 3,495 46,973 92,403 142,871

Ferroxcube 3C90 4,008 34,833 69,653 108,494
Ferroxcube 3C94 5,130 35,442 73,119 113,691
Ferroxcube 3F4 925 18,210 31,495 50,630
Ferroxcube 3E6 503 2,045 44,48 6,996
Fair-Rite 77 1,115 9,316 19,555 29,986
Fair-Rite 78 1,000 7,437 15,654 24,091

Total 19,921 185,581 369,507 575,009

waveform, capturing the main shape of the B–H loop in the targeted frequency range

with significantly reduced data size. Although this process homogenizes waveforms

with different frequencies into sequences of equal length, it also reduces the resolution,

particularly around switching events. Despite the loss of resolution, the single-cycle

data provides a simplified representation of the B–H loop in periodic steady-state

operation.

Further details regarding the data processing methods used in constructing the

MagNet database can be found in [6].

Data are open-sourced in four different formats, including “.mat”, “.json”, “.hdf5”,

and “.csv”. This data structure is designed to contain sufficient information that fa-

cilitates the research community to compare, verify and reproduce the core loss mea-

surement, and trace the potential error mechanisms in the automatic data acquisition

process.

Table 2.1 lists the size of the MagNet dataset in its current state. The sizes of the

data for the ten materials are slightly different because of their various designated

operation ranges for the parameter sweeping. Details about the range of measurement

(e.g., flux density, frequency, dc bias, and temperature) are provided in Appendix A.
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(a)

(b)

Figure 2.8: Data visualization of the measured core losses under triangular excitation
for N87 material: (a) core loss versus peak flux density with frequency at 200 kHz;
(b) core loss versus frequency with peak flux density around 120 mT;

The total number of data points is more than 500,000 so far. Measurements for other

materials are in progress and the scale of MagNet dataset is expanding constantly.

Figure 2.8 and 2.9 illustrates the magnetic core loss density of N87 ferrite material,

providing a visual example of the MagNet database. In this case, the magnetic core

is excited with triangular waveforms at different duty ratios. Panel (a) of Figure 2.8

shows the core loss variation with respect to the peak flux density at a fixed frequency

of 200 kHz. Panel (b) depicts the core loss variation with frequency, where the

peak flux density is approximately fixed at 120 mT. Panel (a) of Figure 2.9 presents
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(a)

(b)

Figure 2.9: Data visualization of the measured core losses under triangular excitation
for N87 material: (a) core loss versus duty ratios at different flux density level with
frequency at 200 kHz; (b) core loss versus peak flux density at different temperature
with frequency at 200 kHz and duty ratio at 0.5.

the variation in core loss with duty ratio at different flux density levels, with the

frequency fixed at 200 kHz, all measured at 25◦C. Finally, panel (b) shows the core

loss variations at different temperatures, with the duty ratio fixed at 0.5 and the

frequency at 200 kHz. Each panel demonstrates a unique nonlinear relationship in

terms of varying factors, which are typically present together in real applications. A

more in-depth discussion of these factors is available in [6]. The intricate nature of

power magnetics characteristics, as evidenced by these plots, further highlights the

necessity of utilizing machine learning techniques.
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Figure 2.10: Three example ways of modeling the behavior of magnetic materials
with neural networks: (a) scalar-to-scalar, (b) sequence-to-scalar, and (c) sequence-
to-sequence.

To provide broader access to the data and tools, a webpage-based platform with

a graphical user interface (GUI) – MagNet – has been developed. The MagNet plat-

form allows users to search, visualize, and download all the aforementioned measured

datasets. It also offers a user-friendly interface for calculating and simulating mag-

netic core loss using the neural network models introduced in Section 2.5, supported

by a PLECS simulation engine. The platform, models, and datasets are open-sourced

and accessible on GitHub1.
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2.5 Neural Network Models for Power Magnetics Modeling

The MagNet database provides a versatile foundation for modeling and designing

power magnetics. It allows users to either plot the data directly to read core loss values

under specific operating conditions or develop equation-based analytical models for

magnetic core loss. These methods include identifying Steinmetz parameters, forming

loss maps, or extracting parameters for models such as Jiles-Atherton. However, this

thesis emphasizes the use of neural network modeling for power magnetics based on

the MagNet database. As shown in Figure 2.10, we explore three approaches to

modeling the behavior of magnetic materials using neural networks:

� Scalar-to-Scalar Model: This approach is akin to the traditional Steinmetz

Equation where a neural network is used to map multiple scalar inputs, such as

frequency, peak flux density, and duty ratio, to a scalar output representing the

core loss. The primary advantage of using neural networks in this context is the

ability to make more accurate predictions over a wider range of operating condi-

tions. This is possible because neural networks can handle a significantly larger

number of parameters than the traditional Steinmetz equation. Furthermore,

the model can be easily extended, generalized, and retrained to incorporate

additional influencing factors, such as temperature and dc bias.

� Sequence-to-Scalar Model: Similar to the improved Generalized Steinmetz

Equation (iGSE), a neural network can be used in a sequence-to-scalar config-

uration. In this case, the entire excitation waveform (e.g., flux density) is input

into the model, and the output is the scalar value of the core loss. This model

is advantageous over the scalar-to-scalar model because it can predict core loss

for arbitrary excitation waveforms without the need to extract parameters from

the waveform, thereby reducing errors.

1MagNet GitHub repo: https://github.com/PrincetonUniversity/magnet/
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� Sequence-to-Sequence Model: This model is similar to the Jiles-Atherton

model and is used to predict the magnetic responses (e.g., B(t)) based on the

excitation waveform (e.g., H(t)). Sequence-to-sequence models are particularly

useful for integration in time-domain circuit simulations, such as SPICE sim-

ulations. They can predict the magnetic material’s behavior in response to

varying excitation waveforms, providing a more comprehensive understanding

of the material’s dynamic performance.

In this dissertation, we focus solely on the sequence-to-sequence models. Other

types of models can be found in [32]. The models discussed in this thesis are purely

data-driven and do not incorporate existing physical knowledge about power magnet-

ics. However, leveraging such existing physical understanding to enhance the neural

network design is a promising future direction for improving model performance [33].

2.5.1 Encoder-Projector-Decoder Architecture

The encoder-projector-decoder neural network architecture proposed in this thesis

is designed to model the complex behavior of magnetic materials, particularly the

hysteresis loop, under varying operating conditions. This architecture allows the

mapping of input time-series data into another time-series output while incorporat-

ing important scalar inputs such as frequency, temperature, and dc bias. These

factors significantly influence the shape and characteristics of the B–H loop, making

it essential to include them in the prediction process.

Figure 2.11 illustrates the structure and data flow of the encoder-projector-decoder

architecture. In this setup, the input sequence consists of the flux density B(t), and

the output sequence corresponds to the field strength H(t), which defines the core

shape of the hysteresis loop. The architecture is built to consider both the time-

series nature of the input and the additional scalar inputs that affect the material’s

response.
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Figure 2.11: Architecture and data flow of the encoder-projector-decoder neural net-
work architecture.

The encoder component processes the input flux density sequence B(t) and com-

presses it into a fixed-dimensional vector. During this process, it captures important

temporal correlations and sequential information, including the shape, amplitude, and

rate of change of the excitation waveform. These hidden state vectors, which summa-

rize the relevant information from the input sequence, are then passed through the

projector.

The projector plays a crucial role by adjusting the hidden state vectors according

to the scalar inputs, such as frequency (f), temperature (T ), and dc bias (Hdc). This

step ensures that the model accounts for the external conditions that influence the

shape of the B–H loop.

Finally, the modified hidden state vectors are processed by the decoder to predict

the output field strength sequence H(t).

An important feature of this architecture is the auto-regressive nature of the model

during inference. At each time step, the model not only uses the current hidden state

vectors but also considers the previously generated predictions. This sequential gen-

eration preserves the temporal information of the sequence, ensuring that the output

is consistently aligned with the input data and maintains hidden time causality.

The proposed model is focused on material-level modeling of magnetic compo-

nents, specifically the hysteresis loop. Although this approach does not directly
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Figure 2.12: Neural network structure of the LSTM-based encoder-projector-decoder
architecture. Temperature (T ), frequency (f), and dc bias (Hdc) information are
mixed with the waveform information in the FNN projector after the encoder and
before the decoder.

incorporate the impact of component-level geometry, the encoder-projector-decoder

architecture could be extended in future work to include geometric factors, which

significantly affect the component-level behaviors of magnetic materials [34–36].

Different types of neural network architectures, such as recurrent neural networks

(RNN) [37], attention-based networks (transformer), and convolutional neural net-

works (CNN) [38–40], can be used for the encoder and decoder modules. These

architectures have proven effective in modeling sequences with complex temporal de-

pendencies. A Wavelet-CNN-based neural network has already been applied to model

core loss in [41]. In this work, we specifically investigate and provide guidance on

using LSTM-based and transformer-based neural networks for the encoder-projector-

decoder architecture, which is designed to map time-series input to output while

incorporating external factors.

2.5.2 LSTM Neural Network Models

Long short-term memory is a specialized type of recurrent neural network that is well-

suited for capturing the temporal relationships within time series data [42]. The ef-

fectiveness of LSTM networks in solving sequence-to-sequence tasks has been demon-

strated, with the LSTM encoder-decoder architecture being one of the most widely
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adopted implementations [43]. The LSTM-based encoder-decoder architecture has a

well-established ecosystem in popular deep learning frameworks such as PyTorch and

TensorFlow.

In the LSTM-based encoder-projector-decoder architecture depicted in Fig-

ure 2.12, both the encoder and the decoder are implemented as LSTM neural

networks. At a given time step t = ti, the input sequence of B(t) is inputted to the

LSTM network and processed through the input gate, forget gate, and output gate

on the encoder side. The temporal information is stored in the cell states and the

hidden states, which are fed back through the recurrent connections for processing

the next input at t = ti+1. By unwrapping the recurrent connections across the

timeline, it is equivalent to passing the entire input sequence through a series of

LSTM networks. Mathematically, the operation of the LSTM cell at time t can be

described as:

ft = σ (Wifxt + bif +Whfht−1 + bhf )

it = σ (Wiixt + bii +Whiht−1 + bhi)

gt = tanh (Wigxt + big +Whght−1 + bhg)

ot = σ (Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(2.6)

where xt is the sequential input at time t. Intermediate variables it, ft, and ot

represent the value of the input gate, forget gate, and output gate, respectively. ct

and ht refer to the cell states and the hidden states, which are the recurrent variables

being fed back to the LSTM cell and thus providing the memorizing capability. The

function σ(x) is the Sigmoid function that operates as the activation function to

provide the nonlinear learning capability. As in an FNN, W and b are the weights
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Algorithm 1 LSTM-based Model
Input:

Flux Density B(t), Frequency f , Temperature T ,
Dc bias Hdc;

Output:
Magnetic Filed Strength H(t);

1: Initialize hidden states h0 and cell states c0;
2: x1 ← B(t1);
3: for i = 1 to L do

hi, ci ← LSTM1

(
hi−1, ci−1, B(ti)

)
; [Encoder]

4: h′
0 ← FNN1(hL, f, T, Hdc);

c′0 ← FNN2(hL, f, T, Hdc); [Projector]
5: Initialize y0;
6: for i = 1 to L do

h′
i, c′i, yi ← LSTM2

(
h′
i−1, c′i−1, y(ti−1)

)
; [Decoder]

7: return H(t)← {y1, y2, ..., yL};

and biases, and the subscript refers to the source and target variables that they are

applied to. The operator ⊙ stands for the Hadamard product, which performs an

element-wise product for all the elements of two matrices.

Then, the cell states and the hidden states at the last time step are concatenated

with the additional inputs, and fed into the projector, where these state vectors are

modified using a feedforward neural network. The LSTM network in the decoder uses

the modified states to predict the output H(t) at t = t0, which is then fed back as

the input for the next prediction at t = t1. The prediction continues until the entire

output sequence is generated.

More details of the data flow in the LSTM model are described by the pseudo-

codes in Algorithm 1. Models and example codes are available on MagNet GitHub

repository2.

2.5.3 Transformer Neural Network Models

2MagNet repository: https://github.com/PrincetonUniversity/magnet/
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Figure 2.13: Network structure of the transformer-based encoder-projector-decoder
architecture. B(t) waveform is the sequence input of the encoder. T , f and Hdc are
the scalar inputs of the projector. During the model training, the targeting H(t)
is directly fed to the decoder as a reference input. During the model inference, the
predicted sequence is fed back to the decoder, generating the entire output sequence
in an auto-regressive manner.

Transformer with the attention mechanism is another very successful network

architecture that excels at modeling sequence-to-sequence problems, such as Large

Language Models represented by ChatGPT. Unlike RNNs, the transformer eschews

recurrent connections, but instead relies entirely on attention mechanisms to capture

temporal dependencies between the input and output sequences. Modified from the
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Algorithm 2 Transformer-based Model
Input:

Flux Density B(t), Frequency f , Temperature T , Dc bias Hdc, Field Strength
H(t) (only available in training);

Output:
Magnetic Field Strength H(t);

1: X ← FNN1

(
B(t)

)
; [Mapping]

2: X ← X + Positional Encoding;
3: X ← Norm

(
X + Self-Attention1(X)

)
;

X ← Norm
(
X + FNN2(X)

)
; [Encoder]

4: X ′ ← FNN3(X, f, T, Hdc); [Projector]
5: if training then

5.1: Y ← FNN4

(
H(t)

)
; [Mapping]

5.2: Y ← Y + Positional Encoding;
5.3: Y ← Norm

(
Y + Self-Attention2(Y )

)
;

5.4: Y ′ ← Norm
(
Y + Input-Output-Attention(X ′, Y )

)
;

5.5: Y ′ ← Norm
(
Y ′ + FNN5(Y

′)
)
; [Decoder]

5.6: H(t)← FNN6(Y
′) [Mapping]

6: else if testing then
6.1: Initialize H0(t)← 0;
6.2: for i = 1 to L do
6.2.1: Y ← FNN4

(
Hi−1(t)

)
; [Mapping]

6.2.2: Y ← Y + Positional Encoding;
6.2.3: Y ← Norm

(
Y + Self-Attention2(Y )

)
;

6.2.4: Y ′ ← Norm
(
Y + Input-Output-Attention(X ′, Y )

)
;

6.2.5: Y ′ ← Norm
(
Y ′ + FNN5(Y

′)
)
; [Decoder]

6.2.6: Hi ← FNN6(Y
′) [Mapping]

6.3: H(t)← HL;
7: return H(t);

original structure in [44], we implement an encoder-projector-decoder architecture as

shown in Fig. 2.13.

The data point at each time step in the input sequence B(t) is firstly passed

through a shallow feedforward neural network and transformed to a d-dimension vec-

tor, which sets the representation dimension of the model. Given that the attention

mechanism used in the transformer model is essentially the dot-product of matrices,

the time steps in the sequence are permutable. To ensure the model effectively cap-

tures temporal dependency, the input vector is combined with a positional encoding

vector, providing information about the position of each time step in the sequence.
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The resulting vector is then fed into the self-attention module, which analyzes and

captures the temporal dependency within the input sequence itself. Further pro-

cessed by a feedforward neural network, a set of hidden vectors encapsulating the

information of the input sequence is generated and passed to the projector.

Next, the hidden vectors obtained from the encoder are similarly concatenated

with the additional inputs, such as frequency f , temperature T , and dc bias Hdc,

and the resulting vectors are passed through a feedforward neural network based

projector. The projector modifies the hidden vectors by considering the influence of

these additional inputs. The modified hidden vectors are then passed to the decoder

for reconstructing the output sequence.

Besides the hidden vectors, the input of the decoder consists of a reference se-

quence. During the network training, it is the target output sequence; during the

network testing, it is the sequence predicted by the model itself (initialized with

zero), shown as the dashed line in Fig. 2.13. The reference sequence is similarly

mapped to a d-dimension vector with a shallow feedforward neural network, summed

with a positional encoding vector, and fed into the self-attention module to generate

another set of hidden vectors. Both sets of hidden vectors from the projector and the

self-attention module are further processed with the input-output attention module.

Finally, the resulting output vectors are processed by a feedforward neural network

to generate the desired output sequence H(t).

More details of the data flow in the transformer model are described by the pseudo-

codes in Algorithm 2. Models and codes are available on MagNet GitHub repository

as well.

2.6 Data Processing and Augmentation

The accuracy of predictions made by a neural network model is intrinsically linked to

the quality of the training data. In this study, the training data is derived from the
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Figure 2.14: Examples of the full-length waveforms measured with N87 ferrite ma-
terial under varying frequency, temperature, and dc bias conditions: (a) sinusoidal
wave; (b) triangular wave; (c) trapezoidal wave.

extensive measured dataset in the MagNet database [32, 45]. The database contains

B–H loop measurements for 10 different ferrite materials, captured across a wide

array of excitation and operational conditions, all collected by an automated data

acquisition system. The measurements are recorded during periodic steady-state

operations.

The MagNet dataset consists of five key data fields: the flux density waveform

B(t), the field strength waveformH(t), the fundamental frequency f , the temperature

T , and the dc bias Hdc. The fundamental frequency is calculated using Welch’s

frequency domain method [46] based on the measured voltage waveform, while the

other four data fields are directly obtained from the measurements. In the following

sections, we present example results based on the dataset of N87 ferrite material,

which includes 142,871 measured data points (B–H loops) covering a range of flux

density amplitudes from 10 mT to 300 mT, fundamental frequencies from 50 kHz to
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500 kHz, temperatures from 25°C to 90°C, and dc bias field strengths from 0 A/m to 60

A/m, with various waveform shapes and duty ratios. The measured waveform shapes

are classified into three types: sinusoidal, triangular, and trapezoidal, based on the

shape of the flux density waveform. Besides the amplitude, the duty ratio D for each

segment in the triangular and trapezoidal waves can be independently adjusted. This

dataset forms the foundation for a neural network model that predicts the hysteresis

loop under varying operating conditions and excitation waveform shapes. Figure 2.14

provides examples of several waveforms contained in the dataset.

Due to the unknown permeability and relaxation effects, it is not possible to di-

rectly estimate Bdc from Hdc. The flux density B(t) here represents only the ac com-

ponent, which is derived from the voltage measurement, while H(t) includes both ac

and dc components, directly obtained from the current measurement. Consequently,

the flux densities in the hysteresis loops presented below correspond only to the ac

part, Bac.

To enhance model convergence, all five data fields B(t), H(t), f , T , and Hdc are

normalized prior to input into the neural network. This is achieved by subtracting

the mean and scaling by the standard deviation for each data field. The parameters

for this standardization are saved and reused during model testing and inference.

The two sequence inputs B(t) and H(t) require additional processing to ensure

that the network achieves both accurate predictions and sufficient generalization. The

most common preprocessing technique for preventing overfitting is the introduction

of reasonable noise. In this study, both B(t) and H(t) waveforms are augmented

with white noise, assuming a uniform distribution within the ranges of ±0.1 mT and

±0.05 A/m, respectively. Additionally, the sequence inputs undergo three further

augmentation steps to improve the network’s performance:
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Figure 2.15: Examples of the single-cycle waveforms with a sequence length of 128,
corresponding to the full-length waveforms shown in Fig. 2.14.

2.6.1 Single-Cycle Interpolation

In the original MagNet database, the B(t) and H(t) waveforms are directly derived

from the raw voltage and current measurements. These waveforms consist of multiple

cycles, all captured in the periodic steady state. Each waveform is represented as a

1×10,000 time sequence with a sampling rate of fs = 125 MHz. Since each waveform

encompasses several cycles, training a neural network with these multi-cycle wave-

forms can present several challenges. On the one hand, the large number of data

points significantly increases the computational load during both network training

and inference. Moreover, since the waveform is captured in a periodic steady state,

the repeated cycles offer little additional valuable information to the network. On

the other hand, waveforms with different fundamental frequencies result in varying

numbers of samples per cycle, causing discrepancies in the number of points on the

B–H plane. This variation makes networks trained on these waveforms susceptible
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to amplifying noise in low-frequency waveforms while neglecting sharp transitions in

high-frequency waveforms.

To mitigate these challenges, a single-cycle interpolation algorithm is applied to

all the B(t) and H(t) waveforms. Given the sampling rate fs and the fundamen-

tal frequency f , the total number of cycles in each waveform can be computed as

N = 10, 000× (f/fs). The 10,000-sample waveform is then interpolated to N × 128

samples using a spline algorithm. After interpolation, the waveform is divided into

multiple sections, each containing a full cycle of the waveform, with exactly 128 sample

points per section. These individual sections are then averaged to form a single-cycle

waveform. Figure 2.15 presents the corresponding single-cycle waveform for each of

the original waveforms shown in Fig. 2.14.

By employing the single-cycle interpolation method, the time stamps of the wave-

form are normalized by the period ∆T = 1/f into the interval [0, 1]. This ensures that

the single-cycle waveforms for both B(t) and H(t) effectively capture the shape of the

hysteresis loop in the periodic steady state, while maintaining a consistent sequence

length across all frequencies. The process of single-cycle interpolation effectively re-

moves the time stamp information from the original waveform. This is another key

reason why the fundamental frequency f is included as one of the network inputs.

2.6.2 Phase-Shifting Augmentation

Through the single-cycle interpolation, we assume that the original waveform can be

effectively reconstructed from the single-cycle waveform, as all waveforms are captured

during the periodic steady state. Furthermore, we hypothesize that the predicted

magnetic behaviors, such as the B–H loop and core loss, should remain unchanged

regardless of where the waveform is segmented into sections, since they all reconstruct

to the same original waveform. This assumption suggests that the predicted results

should not be affected by the starting phase of the single-cycle waveform.
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Figure 2.16: A set of exampleB(t) waveforms of N87 ferrite before and after the phase-
shifting augmentation. The waveforms are measured under sinusoidal excitations at
100 kHz, 25◦C, and zero dc bias.

To mitigate the risk of the neural network misinterpreting the phase information,

phase-shifting data augmentation is applied to the single-cycle waveforms. In this

process, each pair of B(t) and H(t) waveforms is circularly shifted by a random

phase, altering the starting phase of the waveform while maintaining the original

phase difference between the B(t) and H(t) waveforms. Figure 2.16 demonstrates

a set of example B(t) waveforms of N87 ferrite before and after the phase-shifting

augmentation.

Phase-shifting augmentation is also utilized to balance the dataset distribution.

Given that waveforms with different shapes exhibit different degrees of freedom (e.g.,

amplitude, frequency, duty ratio), the amount of data available for each waveform

shape in the original MagNet database varies significantly. For instance, the N87

ferrite material dataset contains 142,871 pairs of B(t) and H(t) waveforms, measured

under varying frequency f , temperature T , and dc bias Hdc conditions. Of these,

the sinusoidal wave, triangular wave, and trapezoidal wave contribute 3,495 (2.45%),
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Figure 2.17: Examples of multi-cycle data augmentation: (a) the original single-cycle
waveform at 125 kHz; (b) the augmented two-cycle waveform at an effective frequency
of 62.5 kHz. A well-designed and well-trained neural network should be able to predict
similar results for both cases.

46,973 (32.87%), and 92,403 (64.68%) pairs, respectively. Notably, the sinusoidal

waveform has far fewer samples compared to the other two waveform shapes. As a

result, training on this imbalanced dataset can lead to biased accuracy, especially

for sinusoidal excitations. By applying phase-shifting augmentation, multiple phase

values can be assigned to the sinusoidal waves, augmenting the data while ensuring

that the augmented waveforms remain distinguishable from one another.

2.6.3 Multi-Cycle Augmentation

In addition to the phase, the frequency is another key factor that influences how

the full-length waveform is divided into single-cycle sections. As described in Sec-

tion 2.6.1, the waveform sequence is sliced based on the fundamental frequency, en-

suring that each section contains a complete cycle of the waveform. Alternatively,

the sequence can also be divided into sections based on 1/N of the fundamental fre-

quency, with each section containing N cycles of the waveform. In theory, for any

integer value of N , the sliced sections can always reconstruct the same full-length se-
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Figure 2.18: Prediction results of the H(t) waveform and the B–H loop of an example
testing point (trapezoidal, 140 kHz, 90◦C, 30 A/m dc bias) at different stages of the
training. The mismatch decreases progressively as the training advances, eventually
achieving a close match between the predicted and measured waveforms.

quence and, consequently, the same B–H loop. However, the resolution within each

cycle is reduced due to the fixed-length interpolation.

Building on this hypothesis, the dataset is further augmented by incorporating

multi-cycle waveforms. Figure 2.17 illustrates an example of two-cycle data aug-

mentation, where the augmented sequence consists of two cycles of the waveform,

effectively halving the frequency. By leveraging multi-cycle augmentation, the neural

network model is expected to predict approximately identical B–H loops and core

losses, regardless of whether the input sequence consists of a single cycle or multiple

cycles. This augmentation not only improves the model’s ability to generalize, but

also enhances its performance for certain types of waveforms that are underrepre-

sented in the original training dataset.

2.7 Model Training and Testing Results

The LSTM-based and transformer-based models are implemented using the PyTorch

framework. Hyperparameters for both models are determined and optimized through
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experimental training results. In the LSTM-based model, both the encoder and de-

coder are composed of a single-layer LSTM network with a 32-dimensional hidden

state. For the transformer-based model, the model dimension is set to 24, with four

attention heads. In both architectures, the projector is implemented as a 3-layer feed-

forward neural network, each layer containing 40 hidden neurons. All these hyper-

parameters are optimized and determined using Optuna, an open-source automated

hyperparameter optimization framework. These settings result in a total of 28,225

learnable parameters for the LSTM-based model and 28,481 learnable parameters for

the transformer-based model.

The neural network model is trained for 5,000 epochs on Google Colab Pro GPU

devices using the MagNet dataset. Following data augmentation, the size of the N87

ferrite dataset is expanded to 269,940 data points. These data points are randomly

split into 70%, 20%, and 10% for the training, validation, and test sets, respectively.

During the training process, the mean squared error (MSE) between the predicted

sequence Hpred(t) and the measured sequence Hmeas(t) is used as the loss function

for backpropagation. The test dataset, which is not used for training, is employed

to evaluate the model’s performance. The Adam optimizer is utilized for model

training, and an exponentially decaying learning rate strategy is implemented to

improve convergence. The initial learning rate is set to 0.004, with a decaying rate of

90% every 150 epochs. The typical training time for each material is approximately

20 hours using Google Colab Pro, with the potential for further acceleration through

parallel computing techniques.

2.7.1 Hysteresis B-H Loop Prediction

We evaluate the performance of the two trained models on the test set to assess their

ability to predict the B–H hysteresis loop. Figure 2.18 shows a series of prediction

results produced by the transformer-based model for an example testing point (trape-
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Figure 2.19: Relative error distributions of the predicted H(t) sequence generated by
the LSTM-based and transformer-based neural network models.

zoidal, 140 kHz, 90◦C, 30A/m dc bias) at different stages of the training process. As

the training progresses, the model gradually converges, minimizing the discrepancy

between the predicted and measured hysteresis loops, eventually achieving a strong

match.

To quantitatively assess the prediction accuracy of the models, we use the relative

error between the predicted sequence Hpred(t) and the measured sequence Hmeas(t) as

the evaluation metric. The relative error is defined as follows:

76



3. MagNet: Machine Learning Framework for Modeling Power Magnetic Material

Relative Err. of Sequence =
rms(Hpred −Hmeas)

rms(Hmeas)

=

√
1
n

∑tn
t=t1

(Hpred(t)−Hmeas(t))
2√

1
n

∑tn
t=t1

(Hmeas(t))
2

(2.7)

Figure 2.19 illustrates the distribution of relative errors in the H(t) predictions

generated by both the LSTM-based and transformer-based models. As shown in the

figure, both models demonstrate strong predictive accuracy for the H(t) sequences.

The average relative error for the LSTM-based model is 4.52%, while for the trans-

former model it is 2.99%. The 95th percentiles for the models are 10.92% and 6.48%,

respectively, as summarized in Table 2.2. The test set encompasses data points from

all three waveform shapes and spans the same ranges of frequency, temperature, and

dc bias as those in the training set. These statistics confirm that both models can

accurately predict the hysteresis loops under a variety of operating conditions. Un-

der the given hyperparameter settings, the transformer-based model outperforms the

LSTM-based model, as it demonstrates lower overall relative error in the prediction

of the hysteresis loop.

2.7.2 Core Loss Prediction

We evaluate the performance of the two trained models to validate their ability to

predict the core loss. Given the predicted B–H loop, the core loss PV can be directly

calculated using the following integral. The relative error between the predicted core

loss PV,pred and the measured core loss PV,meas is then computed, serving as another

metric for assessing model performance.

PV =
1

T

∫ B(T )

B(0)

H(t) dB(t) (2.8)

77



3. MagNet: Machine Learning Framework for Modeling Power Magnetic Material

Figure 2.20: Relative error distributions of the predicted core loss generated by the
LSTM-based and transformer-based neural network models.

Relative Err. of Core Loss =
|PV,pred − PV,meas|

PV,meas

(2.9)

Figure 2.20 shows the distribution of relative errors for the core loss predicted

by both the LSTM-based and transformer-based models. As observed in the figure,

the models are able to accurately predict the core loss for most of the data points in

the test set. The standard deviation of the relative error for the LSTM-based model

is 9.61%, while for the transformer model it is 6.95%. The 95th percentiles for the

relative errors are 13.69% and 10.02%, respectively. These results indicate that the
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Figure 2.21: Examples of the predicted B–H loops under different frequency, temper-
ature, and dc bias conditions, with multiple waveform shapes. Both the LSTM-based
and the transformer-based models accurately predict the majority part of the B–H
loops, while the sharp corners are better captured by the transformer-based model.

transformer-based model outperforms the LSTM-based model in core loss prediction,

demonstrating lower overall relative error.

It is noteworthy that the overall relative error in core loss prediction is higher than

that in hysteresis loop prediction. This discrepancy arises because, during training,

the model is optimized to minimize the shape discrepancy between the predicted se-

quence Hpred(t) and the measured sequence Hmeas(t), while core loss information is

not directly available to the network. Core loss calculation, however, is highly sensi-

tive to the phase mismatch between H(t) and B(t), meaning that an approximately

matched sequence does not necessarily yield an accurate core loss prediction. To

further enhance the accuracy of core loss prediction while maintaining high accuracy

for hysteresis loop prediction, one could incorporate core loss information or phase

information into the training loss function. However, this would likely increase the

computational cost.

2.7.3 Comparison and Discussion

Table 2.2 presents a comparative analysis between the LSTM and transformer imple-

mentations in terms of their accuracy in predicting the hysteresis loop, model size,
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Table 2.2: Comparison of the LSTM and Transformer implementation of the encoder-
projector-decoder architecture.

Model
Type

Average of
Relative Error

95th Percentile of
Relative Error

Number of
Parameters

Elapsed Time
of Model Inference

LSTM 4.52% 10.92% 28,225 0.017 ms/data point
Transformer 2.99% 6.48% 28,481 2.584 ms/data point

and approximate computational cost. Both models were trained and tested using the

same training and test sets for the same number of epochs.

With the given hyperparameter settings, the transformer-based model outper-

forms the LSTM-based model in terms of overall prediction accuracy. Figure 2.21

illustrates examples of predicted B–H loops generated by each model compared to

the measured ones under various frequency, temperature, and dc bias conditions, with

multiple waveform shapes. Both models successfully predict the shape and location

of the majority of the B–H loop, while the sharp corners are better captured by the

transformer-based model, which benefits from the attention mechanism.

Although the LSTM-based model requires less elapsed time for model inference,

the transformer-based model provides superior accuracy. Table 2.3 provides a the-

oretical comparison of the computational complexity of both models [44], where n

represents the sequence length and d is the model dimension. In our testing cases,

both models have n = 128, with the LSTM model having d = 32 and the transformer

model having d = 24. Despite the transformer-based model reducing sequential oper-

ations and the maximum path length by avoiding recurrent operations, it suffers from

a higher complexity per layer, which results in longer training and execution times.

Considering the trade-off between prediction accuracy and execution time,

the transformer-based model is selected for establishing the neural network-aided

smart datasheet. All the results in the following sections are generated using the

transformer-based model.
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Table 2.3: Comparison of the theoretical computational cost between the LSTM and
the self-attention (transformer).

Layer
Type

Complexity
per Layer

Sequential
Operations

Maximum
Path Length

Recurrent
(LSTM) O(n · d2) O(n) O(n)

Self-Attention
(Transformer) O(n2 · d) O(1) O(1)

. . . 

. . . 

. . . 

. . . 

𝐵 𝑡

𝑓 𝑇 𝐻𝑑𝑐

𝐻 𝑡

𝐵 − 𝐻

𝑃𝑉

𝜇

Figure 2.22: Flowchart of the neural network-aided smart datasheet. Users can specify
the excitation waveform and the operating conditions through the user interface as
the inputs to the neural network model. The model inference is executed to predict
the response waveform. After post-processing, the prediction results, such as the
hysteresis loop, core loss, and permeability, are visualized and provided to users.

2.8 Applications of Neural Network Models

2.8.1 MagNet-AI: A NN-aided Smart Datasheet

Evaluation results validate the neural network model’s effectiveness in predicting

the hysteresis loop and core loss under various operating conditions and excitation

waveforms. To establish a neural network-aided smart datasheet, the neural network
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Figure 2.23: Predicted B–H loops with the manually generated model inputs using
50% duty ratio pure triangular waves, where the amplitude of flux density is swept
from 30 mT to 240 mT. The frequency, temperature, and dc bias are fixed at 100 kHz,
25◦C, and 0 A/m, respectively.

model is packaged into a function for rapid inference, where the inputs include the

waveform of flux density B(t), the frequency f , the temperature T , and the dc bias

field strength Hdc, while the output is the waveform of the field strength H(t). The

flowchart of the neural network-aided smart datasheet is depicted in Fig. 2.22.

Here are several prediction examples to demonstrate different ways of using the

NN-aided smart datasheet. In each example, a manually generated dataset is fed into

the neural network model as the inputs, where the excitation waveforms are ideal

shapes and the operating conditions are swept. It should be noted that the waveforms

in the manually generated datasets are pure waves without any non-ideal effects, such

as switching transitions, which naturally leads to slightly different prediction results

compared to the measurements, despite their close resemblance.

� Example 1: Predicting the hysteresis loop at different flux density

amplitudes. In this example, the excitation waveforms are a set of 50%
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Figure 2.24: Predicted B–H loops with the manually generated model inputs using
pure sinusoidal waves, where the fundamental frequency is swept from 100 kHz to
400 kHz. The amplitude, temperature, and dc bias are fixed at 45 mT, 25◦C, and
0 A/m, respectively.

duty ratio pure triangular waves, where the amplitude is swept from 30 mT

to 240 mT. The frequency, temperature, and dc bias are fixed at 100 kHz,

25◦C, and 0 A/m, respectively. Figure 2.23 presents the predicted B–H loops

with this manually generated dataset as model inputs. It is observed that the

impact of the flux density amplitude on the hysteresis loop is well captured and

predicted by the neural network model, achieving a good match with respect

to the adjacent measured hysteresis loops. At small amplitude, the B–H loop

approximately aligns with the straight line B = µiH, where µi is the initial

permeability of the material. As the amplitude increases, the B–H loop ex-

pands and gradually saturates, leading to a significantly larger core loss and a

markedly different permeability.

� Example 2: Predicting the hysteresis loop at different frequencies. In

this example, the excitation waveforms are a set of pure sinusoidal waves, with
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an amplitude of 45 mT. The temperature and dc bias are fixed at 25◦C and

0A/m, respectively, while the frequency is swept from 100 kHz to 400 kHz. Fig-

ure 2.24 presents the predicted B–H loops with this manually generated dataset

as model inputs. It is observed that the impact of the fundamental frequency on

the hysteresis loop is well captured and predicted by the neural network model,

with a good match achieved with the adjacent measured hysteresis loops. As

the frequency increases, the B–H loop enlarges, resulting in a larger core loss

energy per cycle.

� Example 3: Predicting the hysteresis loop at different levels of dc

bias. In this example, the excitation waveforms are a set of pure sinusoidal

waves, with an amplitude of 30 mT. The frequency and temperature are fixed

at 200 kHz and 25◦C, respectively, while the dc bias is swept from 0 A/m to

30 A/m. Figure 2.25 presents the predicted B–H loops with this manually

generated dataset as model inputs. The neural network model captures the

impact of the dc bias on the hysteresis loop and achieves a good match with

the adjacent measured hysteresis loops. As the dc bias increases, the B–H loop

enlarges and tilts.

� Example 4: Predicting the core loss under triangular waves with

different duty ratios. In this example, the excitation waveforms are a set of

pure triangular waves, with an amplitude of 43.5mT, and the duty ratio is swept

from 10% to 90%. The frequency, temperature, and dc bias are fixed at 315 kHz,

25◦C, and 0A/m, respectively. Figure 2.26 presents the predicted core loss

curves with this manually generated dataset as model inputs. The relationship

between the duty ratio and the core loss is well captured and predicted by the

neural network model, achieving a good match with the adjacent measured core

loss. For triangular waves, the core loss reaches a minimum when the duty ratio
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Figure 2.25: Predicted B–H loops with the manually generated model inputs using
pure sinusoidal waves, where the dc bias is swept from 0 A/m to 30 A/m. The ampli-
tude, frequency, and temperature are fixed at 30 mT, 200 kHz, and 25◦C, respectively.

D = 0.5, and increases as it approaches 0 or 1. The core losses for duty ratios

of D and 1−D are approximately the same, resulting in a symmetric core loss

curve versus duty ratio.

� Example 5: Predicting the core loss at different temperatures. In this

example, the excitation waveforms are a set of pure trapezoidal waves, with

duty ratios for rising and falling both at 20%. The amplitude of flux density is

fixed at 35 mT, 70 mT, and 140 mT, respectively. The frequency and dc bias

are fixed at 100 kHz and 0 A/m, while the temperature is swept from 25◦C

to 90◦C. Figure 2.27 presents the predicted core loss curves with this manually

generated dataset as model inputs. The relationship between temperature and

core loss is well captured and predicted by the neural network model, with a

good match achieved with the adjacent measured core loss. As the temperature

rises, the core loss decreases.
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Figure 2.26: Predicted core loss curves with the manually generated model inputs,
where the duty ratio of the triangular wave is swept from 10% to 90%. The amplitude,
frequency, temperature, and dc bias are fixed at 43.5 mT, 315 kHz, 25◦C, and 0 A/m,
respectively.

With the capability to predict the hysteresis loop and core loss under various

operating conditions, as demonstrated in the examples above, the proposed neural

network model can serve as an alternative to conventional datasheets or measurement

datasets. Notably, the neural network model can significantly reduce the size of the

dataset with minimal loss of accuracy. For the N87 material in this work, the size

of the post-processed dataset for model training is 3.8 GB, whereas the size of the

transformer model is only 204 kB, which nearly equivalently describes the behaviors of

magnetic materials and is much more comprehensive than the conventional datasheet

of similar file size. Users of the neural network-aided datasheet can rapidly predict

the behavior of magnetic materials, such as the hysteresis loop, permeability, and

core loss, by specifying excitation waveforms and operational conditions, without the

need for time-consuming data extraction and complex interpolation as required with

conventional datasheets. In contrast to conventional datasheets, the neural network-

aided smart datasheet is efficiently packaged into a function, making it feasible to
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Figure 2.27: Predicted core loss curves with the manually generated model inputs,
where the flux density is fixed at 35 mT, 70 mT, and 140 mT, and the temperature is
swept from 25◦C to 90◦C. The frequency and dc bias are fixed at 100 kHz and 0 A/m,
respectively.

integrate into other iterative calculations, such as multi-objective optimization algo-

rithms or AI-mag [47].

2.8.2 NN-aided Material Recommendation

Benefiting from the fast model inference capabilities of neural networks, the proposed

model can also assist in material comparison and selection for specific excitations and

operating conditions. It can rapidly rank magnetic materials across a wide opera-

tional range. The transformer-based neural network model has been trained on all

ten materials from the MagNet database, including TDKN27, N30, N49, N87, Fer-

roxcube3C90, 3C94, 3E6, 3F4, and Fair-Rite77, 78. The model was trained using a

large measurement dataset similar to the one described in Section 2.4, with the same

network hyperparameters and data augmentation techniques. When a specific oper-

ating condition is provided, these neural network models can be executed sequentially

to sweep across all the materials and calculate the corresponding core loss for each
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Figure 2.28: Material ranking map at different levels of dc bias across a wide range
of flux density amplitude and frequency.

material. By sorting the core loss values among all candidate materials, MagNet-AI

can recommend the best-performing material candidates for the given operating con-

dition. Two examples of material ranking maps are provided here to illustrate the

effectiveness of the neural network-aided material comparison.

� Example 1: Selecting the optimal material at different levels of dc

bias across a wide range of flux density and frequency. In this example,

the excitation waveforms consist of a set of 50% duty ratio pure triangular

waves. The amplitude and frequency of the waveforms are swept from 30 mT

to 200 mT and from 50 kHz to 500 kHz, respectively. The dc bias is selected

from three different levels, namely 0 A/m, 10 A/m, and 20 A/m, while the

temperature remains fixed at 25◦C. Figure 2.28 presents the material ranking

maps for each level of dc bias, where different colors represent different materials

that achieve the lowest core loss under each operating condition. Each material

exhibits its optimal operating range in terms of frequency, flux density, and dc

bias. N30 ferrite demonstrates lower core loss at low frequencies, while N49

ferrite performs better at higher frequencies. The boundary shifts as the dc

bias changes.

� Example 2: Selecting the optimal material at different temperatures

across a wide range of flux density. In this example, the excitation wave-
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Figure 2.29: Material ranking map across a wide range of flux density amplitude and
temperature.

Figure 2.30: Core loss curve comparisons at different levels of flux density amplitude
and temperatures.

forms consist of a set of 50% duty ratio pure triangular waves. The amplitude of

the waveforms and the temperature are swept from 30 mT to 200 mT and from

25◦C to 90◦C, respectively. The frequency remains fixed at 150kHz, and the

dc bias is set to zero. Figure 2.29 presents the corresponding material ranking

map. As depicted, different materials have optimal operation ranges in terms

of temperature. At low temperatures, the material map is dominated by N49
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ferrite and 3C94 ferrite. As the temperature increases, 3C90 ferrite begins to

show superior performance. More specifically, Figure 2.30 presents the pre-

dicted core loss curves for the three aforementioned materials across different

temperatures. It is observed that N49 ferrite achieves its minimum core loss at

relatively low temperatures, while the other two materials are more suitable for

high-temperature applications.

As demonstrated, given a targeted operational range, the neural network model

can effectively assist designers in determining which material offers the most desir-

able performance for the given operating conditions. With the constantly expanding

material category, the neural network model provides design recommendations across

various materials, with only a linearly increasing computational cost.

2.8.3 Online Smartsheet Platform

To enable interactive datasheet inference based on the proposed neural network

model, an open-source webpage-based platform with a graphic user interface (GUI)

has been designed and developed. Powered by Streamlit, an open-source Python

framework for web app deployment, the platform is shared on GitHub and offers

a variety of data visualization tools with a GUI for database access, magnetic core

loss estimation, hysteresis loop prediction, circuit simulation, and access to down-

load all measured data points. The neural network model and the circuit simulation

engine are deployed on the website, allowing users to predict the hysteresis loop un-

der user-defined conditions or simulation parameters. The website architecture and

information flow of the platform are shown in Fig. 2.31.

Figure 2.32(a) presents an example screenshot of the smartsheet session of the

neural network model. With the GUI, users can specify the type of magnetic material,

operating conditions (temperature, frequency, and dc bias), and excitation waveform

(either standard shapes or user-defined waves). The neural network engine rapidly
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Figure 2.31: The website architecture and information flow of the MagNet webpage
platform, which provides users with access to download and visualize the measured
data in the MagNet core loss database, as well as analyze and simulate the magnetic
behaviors with the deployed neural network models and the PLECS simulation engine.

predicts the B–H loop under the specified conditions, simultaneously generating a

sequence of core loss curves around the operating point. This procedure provides a

much more comprehensive dataset compared to conventional datasheets.

The webpage is also linked to a circuit simulation server hosted by Plexim. The

webpage feeds information to the server, which returns inputs to the machine learning

algorithms in combination with power converter operations, as shown in Fig. 2.32(b).

Users can select from a pool of common topologies (Buck, Boost, Flyback, Dual

Active Bridge), specify the circuit parameters, magnetic component specifications,

and operating conditions. The simulation engine simulates and outputs the excitation

waveform of the magnetic component. The MagNet server collects the waveform and

predicts the core loss using the neural network models. Future iterations between

the neural network model and simulation engine will enhance simulation accuracy by
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𝑓 𝑇 𝐻𝑑𝑐

𝐵 𝑡

Figure 2.32: An example screenshot of the MagNet-AI webpage-based magnetics
analysis and prediction platform: (a) smartsheet session; (b) simulation session.
MagNet-AI is available at: https://mag-net.princeton.edu, and open-sourced at:
https://github.com/PrincetonUniversity/magnet.
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capturing nonlinear effects. Note that the flux density is calculated based on specified

geometric parameters, assuming a uniform flux distribution. The impact of geometry

is not considered in this work, but the neural network models can be integrated with

a circuit simulator to enable magnetic-in-circuit simulations.

In addition to the neural network-aided smart datasheet, the website provides a

database section that allows the raw measurement dataset to be visualized in multiple

ways, facilitating rapid comparison of core loss and B–H loop data across different

materials. Users can specify the type of magnetic material, excitation waveforms, and

operating conditions. The website backend searches the database for the requested

data and visualizes it in the selected format. The platform also provides download

access to the raw data collected from the equipment, including test conditions, and

the post-processed dataset files for data-driven modeling applications.

The MagNet platform is continuously maintained and updated with new data and

neural network models. Detailed information is available on the website to ensure

trustworthy repeated measurements and cross-validation of the dataset.

2.9 Transfer Learning for Data Size Reduction

In the previous examples, the large-scale MagNet database serves as the foundation

for training and testing the data-driven models. However, it may be unrealistic for

designers to independently establish a core loss measurement platform and gather

enough data for model training, particularly when dealing with new materials that

have limited data available or when operating conditions lie outside the range of the

existing database or equipment capabilities.

Transfer learning is a machine learning approach in which knowledge gained from

solving one problem is applied to a similar problem. The central hypothesis behind

using transfer learning in magnetic modeling is that similar physical principles govern

how different magnetic materials respond to similar excitations. Thus, a general neu-
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Figure 2.33: The core concept of transfer learning for magnetic core loss modeling.

ral network model can be trained to capture the common characteristics and patterns

of various magnetic materials. This model can then be adapted for new materials,

excitations, temperatures, or dc biases. Figure 2.33 illustrates the fundamental idea

of transfer learning. We demonstrate both material-to-material and temperature-to-

temperature transfer learning to explain the core principles.

2.9.1 Material-to-Material Transfer Learning

Material-to-material transfer learning is particularly useful when a model for a new

material is needed, but only a small dataset is available for this material. Transfer

learning can significantly reduce the amount of data required to achieve satisfactory

accuracy in a neural network model.

Figure 2.34 illustrates the training process for material-to-material transfer learn-

ing. Three machine learning experiments are conducted to show the transfer learning

principles: (1) Four materials from the MagNet database (N27, N49, 3C90, 3C94) are

selected as the source materials, and a large dataset of their data is used to train a

pre-trained model similar to the one used in [32]. The data from these four materials
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Figure 2.34: Network training process of the material-to-material transfer learning.

are combined into a larger dataset for network training, without using the material

type as an input; (2) N87, a new material with limited core loss data, is selected as

the target material. The pre-trained model is fine-tuned using only a small number of

data points randomly selected from the N87 dataset; (3) For comparison, a randomly

initialized neural network is trained directly on the same small dataset.

Figure 2.35 displays the material-to-material transfer learning results for triangu-

lar wave excitations at 180kHz and three different duty ratios. The pre-trained model

is trained on the large dataset (30,705 data points) of the four existing materials (N27,

N49, 3C90, 3C94). In Fig.2.35a, the pre-trained model is applied directly to the new

material (N87) without re-training. The model captures some general patterns of the

core loss, such as the exponential relationship between core loss and flux density, and

the effect of duty ratio, but it fails to accurately predict the details.

The pre-trained model is then re-trained with 100 data points from N87. Fig-

ure 2.35b shows the updated prediction results. After re-training, the model perfor-

mance significantly improves, as the new data fine-tunes the model, leading to much

better accuracy. In contrast, Figure 2.35c shows the results of training a randomly
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Figure 2.35: Prediction results: (a) applying a pre-trained model to the new material
without re-training; (b) applying a pre-trained model to the new material after re-
training with very few data points (100 randomly selected); (c) applying a randomly
initialized model trained with very few data points (100 randomly selected); (d)
applying a randomly initialized model trained with a large amount of data (100
data points).

initialized network with only 100 data points from the new material. This model

performs poorly and fails to capture the core loss distribution accurately.

For comparison, the standard training process is also conducted, similar to the

one described in [32], where a randomly initialized neural network is trained with

100 data points from the new material. This approach serves as a benchmark, and

the results are shown in Figure 2.35d. The model achieves the highest accuracy in

predicting core loss as expected, given the larger dataset.
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Figure 2.36: Error distribution of the prediction results: (a) using a randomly initial-
ized model trained with only 100 data points from N87 (normal training); (b) using
a pre-trained model from 4 existing materials re-trained with 100 data points from
N87 (transfer learning). The data shown is a subset with a duty ratio of 0.5.

Figure 2.36 compares the overall error distribution between normal training

(Fig. 2.35c) and transfer learning (Fig. 2.35b). The duty ratio is fixed at 0.5.

Without pre-training, the model struggles to capture the core loss distribution due

to limited data, resulting in an average relative error of more than 50

Further experiments were conducted by varying the number of data points used

for re-training. Figure 2.37 shows the average testing relative errors as a function of

the number of available data points, ranging from 25 to 3,600. The error rates are

averaged over 10 trials for consistency. The pre-trained models consistently perform

well, regardless of whether they are provided with 25 or 3,600 data points. In contrast,

97



3. MagNet: Machine Learning Framework for Modeling Power Magnetic Material

Figure 2.37: Testing average relative error rates after training a normal FNN and
re-training a pre-trained FNN with varying amounts of data.

a randomly initialized FNN requires at least 2,400 data points to achieve comparable

accuracy. These results confirm that transfer learning significantly reduces the data

requirements for retraining a neural network for a new material.

2.9.2 Temperature-to-Temperature Transfer Learning

Temperature plays a crucial role in determining the behavior of magnetic materials.

Using a model trained at one temperature to predict core loss at a different tem-

perature can lead to substantial inaccuracies. Temperature-to-temperature transfer

learning provides a solution for building neural network models that can predict core

loss at various temperatures, especially when limited data is available for tempera-

tures beyond the training set.

The principles behind temperature-to-temperature transfer learning are similar

to material-to-material transfer learning. Figure 2.38 shows the training process of

transferring a model trained at 25 ◦C to work at 90 ◦C. In this case, the neural network

is first pre-trained for 500 epochs using data from N87 ferrite material at 25 ◦C with

sinusoidal excitations, consisting of 800 data points. The model is then fine-tuned
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Figure 2.38: Training process of temperature-to-temperature transfer learning. Pre-
training and fine-tuning can significantly reduce the data requirements for modeling
magnetic core loss at different temperatures.

using a small number of data points from the 90 ◦C data, with 3,000 additional epochs

of training. A randomly initialized model is trained from scratch on the 90 ◦C data

for comparison.

Figure 2.39 demonstrates multiple core loss curves predicted by different network

models. In Fig. 2.39a, the model pre-trained on 25◦C data is evaluated on 90 ◦C

data without re-training, resulting in poor predictions due to temperature differences.

After fine-tuning with just 10 data points from 90 ◦C, the model performs significantly

better, as shown in Fig. 2.39b. The prediction accuracy is comparable to that of a

model trained with a larger dataset, as shown in Fig. 2.39d. In contrast, Fig. 2.39c

shows the results of training a randomly initialized model with just 10 data points,

which performs poorly.

Figure 2.40 shows the overall error distribution for both the normal training and

transfer learning cases, corresponding to Fig.2.39b and Fig.2.39c, respectively. With

transfer learning, the network achieves lower relative error across the entire evaluation

range, resulting in an absolute average error of 7.94
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Figure 2.39: Prediction results: (a) applying a pre-trained 25 ◦C model to 90 ◦C
data points without re-training; (b) applying a pre-trained 25 ◦C model to 90 ◦C
data points after re-training with very few data points (10 randomly selected); (c)
applying a randomly initialized model trained with very few data points (10 randomly
selected); (d) applying a randomly initialized model trained with a large amount of
data (800 data points).

Finally, the temperature-to-temperature transfer learning process was repeated

with varying numbers of data points for training and fine-tuning. Figure 2.41 shows

the average testing relative error as the number of data points increases, demonstrat-

ing that transfer learning significantly reduces the amount of data required to retrain

a model for new temperature conditions.
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Figure 2.40: Error distribution of prediction results: (a) applying a randomly initial-
ized model trained with 10 randomly selected 90 ◦C data points (normal training);
(b) applying a pre-trained 25 ◦C model to the 90 ◦C data after re-training with 10
data points (transfer learning).

2.10 Chapter Summary

This chapter explores the application of machine learning in modeling power magnet-

ics, with a particular focus on the development and use of the MagNet database for

data-driven modeling of magnetic components. MagNet is an open-source, large-scale

database specifically designed to support machine learning applications in the field of

power magnetics. The data quality within the MagNet database is carefully curated

and controlled to ensure its suitability for accurate model training and prediction,

making it a reliable resource for researchers. The database contains a diverse set of
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Figure 2.41: Testing average relative error rates of normal training and transfer learn-
ing as the number of data points increases.

measurements, encompassing a wide range of materials, operating conditions, and

excitation waveforms, enabling robust model development.

Several neural network modeling applications based on the MagNet database

are explored, including scalar-to-scalar, sequence-to-scalar, and sequence-to-sequence

models. Additionally, the chapter investigates the use of transfer learning tech-

niques to reduce data size requirements, demonstrating how pre-trained models can

be adapted for new materials or operating conditions with minimal data. These ap-

plications showcase the effectiveness of neural networks in capturing and predicting

the behavior of power magnetics, particularly in predicting the B–H loop and core

loss for ferrite materials under various conditions.

The chapter introduces the novel concept of using neural networks as a “datasheet”

for modeling magnetics across a wide operational range. To achieve this, the authors

propose an encoder-projector-decoder neural network architecture for B–H loop mod-

eling. This architecture combines both sequence-based inputs, such as excitation

waveforms, and scalar inputs, such as operational conditions, to model hysteresis

loops effectively. The network is implemented using both LSTM and transformer
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architectures, leveraging the strengths of both approaches to handle the time-series

nature of excitation waveforms and the static nature of operating conditions.

Experimental results demonstrate that the proposed neural network architecture

can accurately predict the B–H loop and core loss for different ferrite materials,

validating its effectiveness. Furthermore, the neural network model is integrated

into a comprehensive, user-friendly webpage-based platform, which serves as a fully

functional online smartsheet for magnetics analysis and prediction. This platform

offers users an interactive tool to predict theB–H loop, core loss, and even recommend

the best materials for given operating conditions, all with much greater convenience

and accessibility compared to traditional datasheets.

Ultimately, this chapter shows that the neural network-aided datasheet not only

provides much more detailed and comprehensive information than conventional

datasheets but also maintains a significantly smaller file size, making it a highly

efficient and scalable solution for modeling power magnetics. With the continuous

growth of the MagNet database, including increased data scale, improved data qual-

ity, and greater waveform diversity, the proposed system offers unique opportunities

for advancing research in power electronics, power magnetics, and data science, with

wide-ranging applications in the field.

In particular, our research group launched the IEEE MagNet Challenge in 2023,

aiming to further promote community engagement in data-driven research for power

magnetics. This international competition was built upon the MagNet database,

which was made publicly available to all participants. Teams were invited to de-

velop their own core loss modeling methods based on the provided dataset, fostering

innovation, collaboration, and benchmarking within the community. The challenge

attracted 24 teams from 17 countries and led to the development of models that

achieved both higher accuracy and smaller model size compared to those presented

in this chapter. Further details can be found in [48] and Appendix C.
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Chapter 3

Via-Winding Magnetics: Ultra-Thin

Multiphase Pinwheel Coupled Inductors

3.1 Background and Motivation

Advances in heterogeneous three-dimensional (3D) integration and power delivery ar-

chitectures have enabled high-performance computing systems operating at sub-1 V

core voltages and drawing over 1000 A of current [49–51]. Conventional voltage regu-

lation modules (VRMs), typically placed on printed circuit boards (PCBs), struggle to

meet these growing demands due to their large physical footprint and the limitations

imposed by lateral power distribution. Delivering such massive currents through

long, high-resistance lateral power delivery networks (PDNs) results in significant

I2R losses, electromagnetic interference (EMI), and degraded transient performance.

Furthermore, the presence of bulky off-chip magnetics exacerbates the challenge of

achieving efficient and compact VRM designs [2].

To address these issues, there has been increasing interest in vertical power de-

livery (VPD) schemes, where power conversion and distribution are aligned in the

vertical direction – from the package substrate to the processor die [52,53]. This con-

figuration shortens the lateral PDN path, significantly reduces conduction losses, and

improves transient response. At the same time, emerging interconnect technologies
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Figure 3.1: The vision of power-via magnetics. The power vias in packaging are
surrounded by a pinwheel patterned magnetic layer as the substrate for minimizing
the power distribution network (PDN) impedance, and connected with power vias in
silicon to enable end-to-end vertical power delivery.

such as Cu-Cu direct bonding and micro-bumps offer higher interconnect densities

than traditional solder-based methods [54–56], making VPD architectures more vi-

able.

Among several VPD configurations, the in-packaging vertical stacked VRM ar-

chitecture, as shown in Figure 3.1 has gained traction due to its ability to deliver

high current with low vertical profile while remaining decoupled from the constraints

of on-die integration. As illustrated in Fig. 1.1, this architecture distributes power

through three vertically arranged functional layers: a capacitor layer for switched-

capacitor (SC) power conversion, a semiconductor layer for power switching, and a

magnetic layer for current filtering and modulation [57–59]. This heterogeneously

integrated structure takes advantage of co-packaging flexibility to combine optimized

semiconductor, capacitor, and magnetic technologies, enabling high current density

and improved efficiency without sacrificing layout flexibility or compatibility with

signal interconnects.
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While the capacitor and semiconductor layers benefit from advanced integration

and planar scaling, the magnetic layer remains a bottleneck due to its dominant

contribution to system height and limited options for miniaturization. Traditional

magnetic components are hard to scale vertically because they require core materials

with sufficient cross-sectional area to support high current while maintaining low

loss and acceptable inductance. Designing compact magnetics with high current

capability and tight physical constraints poses a fundamental co-design challenge in

modern power electronics [60].

To meet these challenges, three complementary strategies can be used to minimize

the magnetic component footprint and improve performance:

� Stage Partitioning: Reduce the burden on magnetics by compressing the

voltage conversion ratio using a preceding SC or transformer-based stage. For

example, a 4:1 step-down SC stage followed by a multiphase buck converter

minimizes duty ratio and associated magnetic stress.

� Coupled Magnetics: Leverage multiphase coupling to cancel dc flux compo-

nents, enhance transient response, and reduce ripple current, thereby enabling

smaller inductance values and reduced core sizes.

� Volumetric Optimization: Design intricate 3D magnetic structures that dis-

tribute flux efficiently within minimal vertical height while accommodating high

current-carrying windings.

This chapter introduces a new magnetic design methodology tailored to vertical

VRM integration: the via-winding magnetics approach. It presents the design and

optimization of ultra-thin multiphase coupled inductors, where vertical conductor vias

are embedded directly within the magnetic core structure. A key innovation is the

pinwheel coupled inductor – a novel geometry that surrounds these vertical windings

with intricately patterned magnetic material to achieve high coupling, minimized
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Figure 3.2: Rendering of the concept of pinwheel magnetics. The magnetic core forms
a 3D structure that effectively contorts itself around vertical windings to achieve
multiphase coupling with low resistance and height.

resistance, and compact height, as depicted in Figure 3.2. This approach represents

a new development in the lineage of coupled magnetic technologies, including planar-

flux inductors [59], twisted-core inductors [61], and vertical winding structures [62].

Ultimately, the core challenge is to strategically and optimally populate the avail-

able 3D volume with magnetic material, copper, and air to meet both electrical and

physical constraints. Figure 3.3 illustrates a broader vision for approaching this chal-

lenge from a computational design perspective. The constrained design space can be

discretized into a set of smaller “unit cubes,” each of which is assigned to one of three

fundamental building blocks of a magnetic structure: (1) air, (2) magnetic material

(e.g., soft ferrite), or (3) copper conductor. This conceptual framework provides a

foundation for advanced layout synthesis, enabling the use of optimization algorithms

– or even machine learning techniques – to iteratively refine and generate magnetic

component structures layer by layer, with the goal of meeting specific performance

metrics such as inductance, coupling, resistance, and height.
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Figure 3.3: Assembly procedure for a four-phase pinwheel inductor. Two identical
core pieces are used, with the top piece rotated 180◦ in the x-axis and placed on top
of the bottom piece. Four vertical windings are inserted through the core assembly.

While such algorithmic synthesis represents a long-term direction, this work takes

a more structured and systematic approach by proposing and evaluating several spe-

cific geometric forms of vertically coupled multiphase inductors. These designs are

carefully parameterized, allowing for closed-form modeling, guided optimization, and

physical prototyping. By studying these representative cases, we demonstrate the

practicality and performance potential of vertical magnetics design, laying the ground-

work for more automated methods in future VRM integration efforts.

The main contributions of this chapter are:

� The introduction of the pinwheel via-winding magnetic structure for efficient

vertical VRMs, enabling strong phase coupling and compact 3D integration.
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� A modeling and optimization framework for determining the optimal geometry,

material distribution, and electrical parameters of the pinwheel structure under

area and height constraints.

� Fabrication and experimental validation of two representative designs demon-

strating 4 V to 1 V conversion at 120 A total current, achieving up to 93.5%

efficiency and 3,960 W/in3 power density at 2 MHz switching frequency.

This work demonstrates how co-designing packaging, interconnects, and magnetics

can push the limits of vertical VRM performance, paving the way toward high-density,

low-impedance, and thermally manageable power delivery for next-generation com-

puting platforms.

3.2 Modeling and Optimization Framework

3.2.1 Principles of Multiphase Coupling

Multiphase coupled inductors have been widely studied for their ability to break

traditional trade-offs in magnetic design for VRMs. In a coupled structure, multiple

windings share common magnetic flux paths – either through a unified magnetic

core or via close-proximity air coupling. This configuration, when combined with

interleaved phase operation, extends the current ripple cancellation benefits typically

observed at the input and output nodes to each individual phase. As a result, a

multiphase coupled inductor can reduce both the per-phase ripple current (∆ip−p,Φ)

and the effective inductance observed during transient events (Lℓ), compared to using

discrete uncoupled inductors.

Theoretical analysis of multiphase coupled inductors has been well established in

prior works [62–65], including recent explorations of air-coupled implementations [66].

In this section, we summarize key formulations critical to the optimization of the

pinwheel-type multiphase coupled inductor introduced in this thesis.
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Figure 3.4: Generalized lumped reluctance model of an M -phase coupled inductor.
The model captures the geometric structure with M leg reluctances representing the
flux paths around each winding and a central reluctance representing the middle air
gap. This formulation aligns closely with physical dimensions, allowing calculation of
flux distribution and enabling evaluation of key design constraints such as inductance,
coupling coefficient, and maximum flux density during optimization.

For any candidate magnetic structure, a corresponding lumped reluctance model

can be constructed, where magnetic reluctance is defined as R = l
µA

, with l being the

effective flux path length, A the cross-sectional area, and µ = µrµ0 the permeability

of the magnetic material. This model allows estimation of flux and flux density in

each region to prevent core saturation.

Figure 3.4 shows a generalized reluctance model for an M -phase coupled inductor.

The per-phase leakage inductance, which determines transient response behavior, is

derived as:

Lℓ =
N2

RL +MRC

(3.1)

where N is the number of turns per phase winding, and RL, RC are reluctances as

shown in the figure.

With phase interleaving (i.e., 360◦/M phase shift), current ripple at the shared

nodes is significantly reduced. The ripple reduction propagates into each phase due

to magnetic coupling, quantified by the coupling coefficient β = MRC
RL

. The resulting
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per-phase ripple reduction ratio is defined as:

γ =
1 + βΓ

1 + β
(3.2)

where the interleaving factor Γ is given by:

Γ =
(k + 1−DM)(DM − k)

D(1−D)M2
, (3.3)

with D = V out
V in

, T = 1/fs, M the number of phases, and k an integer such that

k
M

< D < k+1
M

.

Based on these, the per-phase peak-to-peak current ripple is expressed as:

∆ip−p,Φ = γ
Vout(1−D)T

Lℓ

. (3.4)

These analytical relationships from [62] serve as the foundation for the optimiza-

tion routine, enabling rapid evaluation of ripple behavior, transient response, and

magnetic saturation for a given inductor geometry.

3.2.2 Optimization Framework

Using the coupled inductor model described above, a comprehensive optimization

framework is developed to guide the design of vertical multiphase coupled inductors.

The full process is illustrated in Fig. 3.5. Both inductor designs presented in this

work follow this same optimization flow.

The framework begins with two types of inputs: (1) system-level parameters in-

cluding Vin, Vout, switching frequency, per-phase current, and worst-case current im-

balance; and (2) geometric constraints such as total footprint and height.

Given these, the optimizer selects geometry-defining parameters for a specific

structure (e.g., the pinwheel inductor) and evaluates its performance. To do this
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Figure 3.5: Flowchart of the optimization process for a multiphase coupled induc-
tor. Given the system operating conditions and geometric parameters, the algorithm
estimates the reluctance of each magnetic path and the winding resistance, then com-
putes coupled inductor characteristics. The optimization minimizes the total loss of
inductors while satisfying constraints on geometric limitations, coupled inductor per-
formance, peak current and flux density.

efficiently, the magnetic core is discretized into segments, enabling localized flux den-

sity estimation without relying on full FEM simulation.
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With the calculated reluctances and winding resistances, the key performance

metrics – including coupling coefficient, leakage inductance, ripple current, and peak

flux – are determined.

The optimization objective is to minimize total inductor loss, which includes:

� Dc copper loss, based on average current and winding resistance.

� Ac copper loss, derived from current ripple and ac resistance models.

� Core loss, computed using the iGSE model [26] based on peak and RMS flux

in each segment, which, in the future, can be replaced and improved by neural

network models shown in Chapter. 2.

Each iteration checks for constraint compliance, including physical feasibility, tar-

get inductance and ripple, and safety margins for peak current and flux density –

even in worst-case imbalance scenarios.

Beyond identifying optimal geometries, this framework also enables design-space

exploration via parameter sweeping. For example, by varying the core footprint or

height while holding electrical conditions constant, one can trace Pareto curves of

volume vs. loss, enabling co-optimization of performance and compactness.

3.3 Design Examples and Implementation of Pinwheel Cou-

pled Inductors

To implement the concept of via-winding magnetics, both inductor designs presented

in this work utilize vertically oriented, straight-through conductors that are magnet-

ically coupled via a surrounding pinwheel-shaped ferrite core. In this core configu-

ration, two identical ferrite components are employed – one rotated 180◦ about the

x-axis and placed atop the other – to create closed magnetic paths encircling each
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vertical conductor. This arrangement enables magnetic flux to flow from the cen-

tral region of the top core, around each via, and return to the bottom core, thereby

achieving strong interphase coupling while maintaining sufficient leakage inductance

per phase.

To evaluate the flexibility of the proposed optimization methodology (detailed in

Section 3.2), two distinct designs are explored, each following the same design flow but

targeting different specifications. The first design, referred to as the pinwheel inductor

#1, features a compact 8 mm × 8 mm footprint and a total height of 1.8 mm. It is

designed to support a rated current of 25 A per phase and accommodate up to 5%

dc current imbalance among phases. The second design, termed the expanded variant

#2, adopts a slightly larger 9mm × 9mm footprint and a 2.5 mm height, allowing

higher current operation at 40 A per phase with tolerance for up to 10% dc current

mismatch.

Both inductors are designed for four-phase multiphase buck converters operating

at 2 MHz, targeting a 4 V to 1 V voltage conversion. As derived in Eq.(3.3), the

effectiveness of interleaved current ripple cancellation in multiphase coupled inductors

is maximized when the converter duty cycleD is near k/M , where k ∈ 0, 1, . . . ,M − 1.

With M = 4, a target duty cycle of 25% aligns well with this optimal ripple reduction

condition.

The core material used in both designs is DMR53 Mn-Zn ferrite, manufactured

by Hengdian Group DMEGC Magnetics Co., which offers a relative permeability of

900 and a saturation flux density of 480 mT. These characteristics make it a suitable

choice for compact, high-efficiency, and high-density magnetic integration in ultra-

thin VRM applications.

A summary of the shared electrical specifications and design constraints for both

inductor implementations is provided in Table 3.1.
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Table 3.1: Electrical Parameters and Constraints
Electrical Parameters

Description Symbol Value

Input Voltage Vin 4 V

Output Voltage Vout 1 V

Switching Frequency fs 2 MHz

Electrical Constraints

Description Symbol Value

Dc Resistance Rdc ≤ 0.2 mΩ

Full-Load Phase Current Iout,Φ 25 A or 40 A

Worst-case Current Imbalance ∆Iout,Φ 5% or 10%

Per-Phase Current Ripple ∆ip−p,Φ ≤ 3 A

Saturation Flux Density Bsat 480 mT

Per-Phase Leakage Inductance Lℓ ≤ 30 nH

3.3.1 Design #1: Pinwheel Coupled Inductor

Inductor Geometry

The structural design of the pinwheel coupled inductor is depicted in Fig. 3.6, which

presents a three-dimensional view of the complete assembly alongside top and side

projections that define all critical geometrical parameters.

As illustrated in Fig. 3.6(a), each phase winding follows a vertical trajectory,

conducting current directly from the bottom to the top of the magnetic assembly.

This through-hole winding strategy substantially reduces the effective length of the

conductor, thereby lowering both resistance and conduction losses. The resulting

magnetic flux generated by any given winding follows a loop within the core, enter-

ing from the top core section, circulating through the adjacent magnetic legs, and

returning through the legs of the remaining three windings via the bottom core sec-

tion. A small portion of the flux also travels across the central air gap between the

core halves, completing the closed magnetic path. This arrangement ensures strong
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(a) (b)

Figure 3.6: (a) 3D view of the four-phase pinwheel coupled inductor, illustrating the
flux path associated with winding 1. The dc flux generated by this winding wraps
around the winding and circulates from the top core piece to the bottom, with most of
the flux continuing to the leg posts of the other three windings, while a small amount
of the flux travels through the middle air gap, completing the magnetic path. (b)
Parameterization of the pinwheel inductor geometry. The top view defines the key
in-plane dimensions sinner, souter, and lleg, which determine the allocation of ferrite
material for each leg and the central region, as well as the designated copper winding
space. The side view illustrates the z-dimension parameters: core plate thickness hg

and air gap height hp, and total assembled height. These geometric parameters serve
as the basis for structural optimization and magnetic modeling.

magnetic coupling between phases while maintaining sufficient self-inductance in a

compact form factor.

The top-down view of the core highlights two major ferrite domains: a central

core region and four surrounding magnetic legs. The central region, with an area of

s2inner, serves as the convergence zone for magnetic flux from all windings. Each leg

comprises a square ferrite post with an area of l2leg, joined to the central area by angled

flux-guiding arms. The intervening space, defined as
(souter−2×lleg−sinner)

2

2

, forms the

winding window where vertical copper conductors are routed.

The side view presents the complete stacked assembly of the inductor, made of two

identical ferrite plates. The vertical dimensions are governed by two key parameters:

hp, denoting the thickness of each ferrite layer, and hg, representing the air gap

height between the two plates. These dimensions, combined with the planar layout,
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Figure 3.7: Pareto front of the pinwheel coupled inductor optimization. The “knee”
of the curve, where the height is minimized while maintaining low loss, is at 1.8 mm.
The design at 1.8 mm is selected for fabrication.

determine the total inductor volume and serve as the basis for material allocation in

the optimization process.

Optimization and Simulation Results

Using the geometric framework illustrated in Fig. 3.6 and the modeling methodology

detailed in Sec. 3.2, the pinwheel inductor was optimized to deliver high current-

handling capability while maintaining a low vertical profile. The planar dimensions

were fixed at 8×8 mm2 to comply with packaging constraints at the system level, while

the vertical height was treated as a design variable and swept to evaluate trade-offs

between overall thickness and power loss.

Figure 3.7 shows the resulting Pareto front, which captures the optimal loss achiev-

able for each candidate inductor height, subject to the electrical and volumetric con-

straints defined in Table 3.1. As expected, increasing the height permits greater
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Table 3.2: Geometric Parameters of Designed Pinwheel Inductor
Volumetric Constraints

Description Symbol Value

Length souter ≤ 8 mm

Width souter ≤ 8 mm

Total Height 2× hp + hg 1.6− 2.5 mm

Optimization Results

Description Symbol Value

Outer Side souter 8 mm

Inner Side sinner 1.5 mm

Leg lleg 2.65 mm

Total Height 2× hp + hg 1.8 mm

Plate Height hp 0.6 mm

Gap Height hg 0.6 mm

accommodation of magnetic material, thereby lowering losses. However, the benefit

of further increasing height becomes marginal past a certain point.

A total height of 1.8 mm was selected as the final design, as it corresponds to the

“knee” of the Pareto curve – a point where further height increases result in minimal

additional loss reduction. At this operating point, the inductor exhibits a total loss

of 0.73 W under full-load conditions (25 A dc current per phase), while remaining

within the targeted low-profile envelope required for vertical system integration.

The finalized inductor design, with geometric parameters summarized in Table 3.2,

adopts a total height of 1.8 mm, where the vertical dimension is distributed as 0.6 mm

for each ferrite plate and 0.6 mm for the central air gap. This partition balances

magnetic performance and manufacturability within the constrained height profile.

To assess magnetic performance under realistic operating conditions, the structure

was analyzed using ANSYS Maxwell 3D simulations. Figure 3.8 presents the simu-

lated dc magnetic flux distribution under two loading conditions. In the balanced

case, each winding carries 25 A of dc current. The resulting peak flux density reaches
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Figure 3.8: ANSYS Maxwell 3D dc flux density distribution with balanced phase
currents of 25 A per phase (left) and a dc current mismatch where IDC,1−3 = 24.5 A
and IDC,4 = 27 A (right). The maximum flux density in the core is 360 mT when all
phases have balanced currents. For the dc current mismatch condition, the inductance
of winding four drops by 20% of its zero dc bias inductance value, still providing
sufficient inductance during full load unbalanced operation.

0.36 T near the ferrite corners adjacent to the copper conductors, which is well be-

low the saturation threshold of the DMR53 ferrite, ensuring safe magnetic operation

across all phases.

To further evaluate the impact of current imbalance – a critical consideration in

coupled inductor designs – a second scenario introduces a deliberate 5% mismatch,

where windings 1–3 each conduct 24.5 A and winding 4 carries 27 A. This induces

localized magnetic stress in the vicinity of the higher-current phase. As a result,

the self-inductance of winding 4 experiences a 20% reduction relative to its zero-bias

value. Nevertheless, this drop remains within acceptable limits and does not compro-

mise the inductor’s ability to satisfy ripple and transient performance specifications.

These results confirm that the pinwheel structure maintains magnetic robustness un-

der moderate imbalance, an important consideration for real-world current sharing

among phases.

Performance Characterization and Evaluation

Physical prototypes of the pinwheel coupled inductor were fabricated based on the

optimized dimensions detailed in Table 3.2. Manufacturing of the ferrite cores and
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Figure 3.9: Photographs of the fabricated pinwheel core pieces and the fully assembled
four-phase coupled inductor. The identical top and bottom core halves are shown
alongside the final stacked assembly.

assembly of the complete inductor structure were carried out by ITG Electronics.

Figure 3.9 shows photographs of the fabricated components, including the identical

top and bottom ferrite pieces and the fully assembled four-phase inductor. The

inductor was integrated into a test platform consisting of a four-phase buck converter

and its motherboard, which are described in more detail in Section 3.4, to facilitate

electrical performance evaluation.

The inductance characteristics of the assembled inductor were measured using an

Agilent 4395A Network Analyzer, following the procedure outlined in [58]. These

measurements capture both the intrinsic behavior of the magnetic structure and the

parasitic effects introduced by PCB layout and vertical ground return paths. At

2MHz, the self-inductance for each phase was found to be 189 nH, while the total

leakage inductance measured 6.63 nH.

The resulting inductance matrix for the inductor integrated in the four-phase buck

converter is:
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Figure 3.10: Simulated inductor current waveforms using the inductance matrix ob-
tained from Ansys Maxwell 3D for a four-phase buck converter with Vin = 4 V,
Vout = 1 V, and fs = 2 MHz. The peak-to-peak current ripple is 1.52 A.

L =



189 −54.3 −54.3 −54.3

−54.3 189 −54.3 −54.3

−54.3 −54.3 189 −54.3

−54.3 −54.3 −54.3 189


nH. (3.5)

This matrix reflects a high degree of symmetry and interphase coupling, with

substantial mutual inductance between each phase pair. Based on this matrix, the

effective steady-state per-phase inductance at a duty ratio of D = 25% is calculated

to be 243 nH, and the effective leakage inductance is 26 nH.

Using these inductance values, a time-domain simulation was performed to evalu-

ate inductor current ripple under nominal converter conditions (Vin = 4 V, Vout = 1 V,

fs = 2 MHz). As shown in Fig. 3.10, the resulting peak-to-peak current ripple per

phase is 1.52 A, indicating strong ripple suppression enabled by the coupled inductor

architecture.
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Figure 3.11: Plot of the steady-state inductance (Lpss) vs. duty cycle for the pinwheel
coupled inductor assembly. At D = 0.25, Lpss = 243 nH, exceeding LS by a factor of
1.3 and exceeding Lptr by a factor of 7.

Figure 3.12: Plot of the peak-to-peak phase current ripple for the four-phase buck
VRM when Vin = 4 V and fs = 2 MHz compared to if four discrete inductors with
values Ldisc = LS and Ldisc = Lptr were used. The peak-to-peak phase current ripple
at D = 0.25 is 1.54 A for the coupled inductor, 1.98 A for the discrete inductor case
where Ldisc = LS, and 14.13 A for the discrete inductor case where Ldisc = Lptr.

To further assess the inductor’s dynamic behavior, Fig. 3.11 presents the variation

of per-phase steady-state inductance Lpss and leakage inductance Lℓ as functions of
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the duty cycle D = Vout/Vin, calculated using Equations (3.4) and (3.1). Notably, at

typical operating points such as D = 25%, 50%, and 75%, Lpss exceeds the nomi-

nal self-inductance value, highlighting the benefit of interphase magnetic coupling in

multiphase topologies. This increase in effective inductance leads to improved current

ripple suppression under steady-state operation.

The ripple mitigation effect is quantitatively illustrated in Fig. 3.12, which com-

pares the peak-to-peak phase current ripple of the pinwheel coupled inductor against

that of two discrete inductor configurations. The first comparison case uses dis-

crete inductors with the same self-inductance as the coupled inductor (Ldisc = LS =

189 nH), while the second uses inductors with the same transient inductance (Ldisc =

Lptr = 26 nH). At a duty ratio of D = 0.25, the coupled inductor achieves a ripple

of 1.54 A, representing a 1.3× reduction compared to the LS case and a 7× improve-

ment over the Lptr case. This substantial reduction in ripple current reinforces the

benefits of tight interphase coupling in achieving higher performance within compact

footprints.

3.3.2 Design #2: Extended Pinwheel Coupled Inductor

Inductor Geometry

To accommodate increased load current requirements – raising the per-phase rating

from 25 A to 40 A – and a more relaxed current mismatch tolerance of up to 10%, the

extended pinwheel inductor adopts a slightly enlarged footprint and vertical profile

compared to the baseline design.

As illustrated in Fig. 3.13, this variant adopts a restructured magnetic layout to

more efficiently utilize the available 3D volume. The revised geometry improves the

spatial partitioning between copper and magnetic material, allowing for increased

core cross-sectional area and improved magnetic flux containment, which are both
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(a) (b)

Figure 3.13: (a) 3D rendering of the extended pinwheel inductor, showing vertical
current conduction and flux circulation paths. (b) Geometry parameterization high-
lighting key variables a, b, x, s, lside, hp, and hg, which are used in modeling and
optimization.

critical for handling higher energy levels while limiting core saturation and power

loss.

Consistent with the previous design, each phase utilizes a vertically oriented con-

ductor that runs straight through the core stack from bottom to top, as shown in

Fig. 3.13(a). This straight-through configuration minimizes winding length and asso-

ciated resistance, improving conduction efficiency under high current operation. The

resulting magnetic flux path wraps through the top ferrite piece, down the outer

leg posts, across the bottom ferrite plate, and back up through neighboring legs. A

portion of the total flux also closes through the center air gap, enhancing interphase

coupling and overall magnetic efficiency.

From the top view, the magnetic core can be divided into a central flux-converging

region and four surrounding leg posts that serve as return paths for the coupled flux.

Several variables govern this geometry: the offset parameter a defines the position of

each winding aperture, b sets the width of the leg post, x controls the angular sector

assigned to each leg, and s represents the size of the copper window. The full lateral
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span of the structure is set by lside, determining the outer boundary of the ferrite

footprint.

In the vertical dimension, the structure consists of two core plates, each with

height hg, and vertical leg extensions of height hp, as shown in the side view. These

vertical dimensions determine the total volume available for magnetic and winding

material, and are included as variables within the optimization process.

The overall structure is composed of two symmetric ferrite pieces. One is flipped

180◦ about the horizontal axis and stacked onto the other, enabling natural align-

ment of magnetic paths and winding windows. This assembly approach eliminates

the need for additional magnetic fillers or bonding layers while forming a continuous

closed magnetic loop around each winding, facilitating strong coupling and manufac-

turability.

Optimization and Simulation Results

Leveraging the geometric framework illustrated in Fig. 3.13 and the modeling method-

ology outlined in Section 3.2, the extended pinwheel inductor was optimized to accom-

modate higher phase currents while preserving a constrained vertical profile. For this

design, the footprint was fixed at 9×9mm2, ensuring compatibility with the system-

level layout, while also offering sufficient core volume to handle the elevated magnetic

flux demands of 40 A per-phase operation.

As with the prior design, the total height of the structure was treated as a sweep

variable in the optimization process. This enabled the identification of the Pareto

front, capturing the trade-off between magnetic loss and structural height. The final

design point was selected to balance minimal power loss with compact packaging.

The resulting key geometrical parameters of the optimized structure are summarized

in Table 3.3.
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Table 3.3: Geometric Parameters of Designed Pinwheel Inductor
Optimization Results

Description Symbol Value

Total Length lside 9 mm

Total Width lside 9 mm

Winding Location a 1.6 mm

Leg Post Width b 0.4 mm

Window Size s 1.0 mm

Angular Span x 0.5 mm

Plate Thickness hg 0.8 mm

Leg Post Height hp 2.5 mm

Total Height hp 2.5 mm

Compared to the baseline 8×8 mm2 configuration, the extended pinwheel design

allocates a larger cross-sectional area to each winding window. This expanded area

allows for the integration of thicker copper conductors, which is especially beneficial

for reducing conduction losses under high-current operation. In parallel, the recon-

figured geometry achieves better volumetric efficiency – enabling a higher fill factor

for the ferrite material – which improves the inductive energy storage capability and

reduces core losses.

Despite only moderate increases in footprint and vertical height, this optimized

design significantly enhances the current handling capacity and robustness against dc

current imbalance, achieving these improvements within the tight spatial constraints

required for high-density integration.

To verify the magnetic safety margin of the optimized design, the extended pin-

wheel inductor was evaluated using 3D finite element simulations conducted in AN-

SYS Maxwell. These simulations help ensure that the magnetic core operates within

safe flux density limits under expected operating conditions. Figure 3.14 illustrates

the simulated dc flux distributions for two representative scenarios.
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Module Design – 40 A (Gapped)

3

Figure 3.14: ANSYS Maxwell 3D simulation of dc flux density distribution in the
extended pinwheel inductor under (left) balanced phase currents of 40 A and (right)
a 10% dc current mismatch where IDC,1−3 = 40 A and IDC,4 = 44 A. The maximum
flux density reaches 400 mT under balanced conditions. With the imbalance, localized
flux increases are observed and the self-inductance of winding four decreases by 15%,
while remaining sufficient for full-load operation.

Under nominal operation, each of the four phases conducts a balanced dc current

of 40 A. The resulting flux density distribution reveals a peak value of approximately

0.40 T, primarily concentrated near the leg regions adjacent to the vertical winding

conductors. This value remains comfortably below the saturation flux density of

460 mT for the DMR53 Mn-Zn ferrite, confirming that the core can safely handle

elevated current levels without entering magnetic saturation.

To further evaluate the inductor’s performance under real-world non-idealities,

a second simulation scenario introduces a 10% dc current mismatch – winding 4 is

driven at 44 A, while the other three carry 40 A. This imbalance induces localized flux

intensification near the overloaded leg post, but the peak flux still remains below the

ferrite’s saturation threshold. According to the simulation results, the self-inductance

of winding 4 decreases by roughly 15% relative to its zero-bias value. Nevertheless,

this reduced inductance remains sufficient to ensure acceptable ripple suppression

and transient response under full-load conditions. These findings demonstrate the
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(a) Variant 1

(Original Design)

(b) Variant 2

(90° Corners)

(c) Variant 3

(z-axis splitting)

Figure 3.15: Three variants of the extended pinwheel coupled inductor design. (a)
Variant #1 is fabricated based on the original extended pinwheel geometry, where two
core halves with interleaved structures are assembled at 45◦ corner joints, resulting in
unintended air gaps due to manufacturing limitations. (b) Variant #2 modifies the
corner geometry to form complementary 90◦ angled faces, allowing easier machining
and improved alignment. (c) Variant #3 introduces a horizontal split along the z-
axis, forming two equal-thickness core halves with all contact surfaces lying in a single
plane, enabling tighter assembly and reduced variation across phases.

extended design’s resilience to practical current mismatches, highlighting its suitabil-

ity for demanding multiphase applications.

Design Variants and Manufacturing Considerations

Following optimization, prototype samples of the extended pinwheel coupled inductor

were fabricated by ITG Electronics according to the geometric specifications listed in

Table 3.3. The first prototype – denoted as Variant #1 and shown in Fig. 3.15(a) –

adhered closely to the original structural concept. However, inductance measurements

revealed a substantial performance shortfall, with values falling 30% to 40% below

simulated expectations and exhibiting significant inter-phase variation.
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Machined Core Process

Raw Material Pressing Carving Sintering Grinding

Size shrinks around 13% Grinding surfaces

Figure 3.16: Conceptual manufacturing process of magnetic components with cus-
tomized geometries, provided by ITG Electronics. The carving precision determines
how closely the fabricated shape matches the intended design. During sintering, di-
mensional shrinkage occurs and must be accounted. The effectiveness of grinding
directly impacts the flatness and quality of contact surfaces, which are critical for
achieving tight assembly and minimizing unintended air gaps.

Subsequent analysis identified the root cause as unintended air gaps at the corner

junctions between the two ferrite halves. The original design assumed ideal alignment

of the angled corner faces, enabling low-reluctance magnetic flux closure across phases.

In practice, however, fabrication tolerances and geometric complexity prevented these

sharp 45◦ mating surfaces from achieving full contact during assembly. The resulting

high-reluctance gaps disrupted the intended 3D magnetic paths, diminishing both

inductance and interphase coupling effectiveness.

Figure 3.16 outlines the conceptual manufacturing process employed by ITG Elec-

tronics for customized ferrite components. Key fabrication stages – particularly carv-

ing, sintering, and grinding – play critical roles in defining the dimensional accuracy

and structural integrity of the magnetic core. Intricate features such as narrow slots,

sharp corners, and internal cavities are especially vulnerable to chipping, deformation,

or misalignment due to the brittle nature of ferrite. Furthermore, surface flatness is

paramount for minimizing magnetic reluctance at contact interfaces. While planar

surfaces are straightforward to grind and align, the angled corner joints in Variant
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#1 introduced complexity that exceeded standard tooling capabilities, leading to

misalignment and variable assembly fit.

This experience underscores an important principle in vertically integrated mag-

netic design: while unconventional 3D geometries can offer superior electromagnetic

performance, their real-world viability hinges on manufacturability and mechanical

precision. Accordingly, magnetic component design must be informed by both per-

formance objectives and practical fabrication constraints, especially in applications

aimed at scalable production.

To overcome the shortcomings of Variant #1, two revised core geometries – Variant

#2 and Variant #3, shown in Fig. 3.15(b) and (c), respectively – were developed.

These designs preserve the overall footprint, form factor, and structural philosophy of

the extended pinwheel inductor, while introducing localized geometric modifications

to improve alignment and minimize assembly-induced air gaps:

� Variant #2 transforms the original 45◦ corner joint into a pair of complementary

90◦ faces by shifting the upper and lower edges of the mating surface in opposite

directions. This modification allows for more reliable surface preparation using

conventional grinding tools and improves mating accuracy during assembly.

However, some sensitivity to y-axis misalignment remains, which may introduce

slight asymmetries or residual air gaps.

� Variant #3 reorients the stacking direction by introducing a horizontal split

along the z-axis. This results in two core halves with flat, co-planar contact

surfaces, enabling uniform grinding and tighter assembly tolerances. The phase

windings of all four channels now intersect a single horizontal plane, analogous

to the approach used in the original pinwheel inductor. While this configura-

tion simplifies assembly and improves phase-to-phase consistency, it requires

high dimensional precision in the carved flux-guiding slots to preserve magnetic

continuity across the vertical axis.
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Both variants were fabricated and experimentally evaluated. In contrast to Vari-

ant #1, both revised designs demonstrated significantly improved inductance values,

closely matching simulated predictions and exhibiting much lower variation across

phases. The difference in electrical performance between the two was minimal. How-

ever, owing to its superior mechanical alignment and ease of surface finishing, Variant

#3 was selected as the final implementation for all subsequent characterization and

system-level integration.

Performance Characterization and Evaluation

The extended pinwheel coupled inductor, implemented using Variant #3, was fabri-

cated and experimentally evaluated to validate its electrical performance. As with

the previous design, the inductor was integrated into a custom four-phase buck con-

verter test fixture, with the entire assembly mounted on a dedicated motherboard for

measurement and evaluation.

To account for any asymmetries introduced during manufacturing, phase-by-phase

inductance measurements were performed. Specifically, the self-inductance of each

phase was measured between its input terminal and the common output node. In

addition, mutual inductance between phase pairs was extracted through differential

measurements. These data were used to construct the full inductance matrix, which

captures the inter-phase coupling behavior of the physically realized inductor. The

resulting inductance matrix, measured with the inductor installed in the four-phase

vertical VRM assembly, is given as:

L =



129.2 −34.6 −39.3 −36.2

−34.6 127.2 −34.5 −35.2

−39.3 −34.5 120.9 −35.5

−36.2 −35.2 −35.5 123.0


nH (3.6)
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Figure 3.17: Steady-state inductance (Lpss) and leakage inductance (Lℓ) vs. duty
cycle, extracted from the measured inductance matrix. AtD = 0.25, Lpss = 160.9 nH.

Using this experimentally obtained matrix in conjunction with the coupled in-

ductor modeling framework outlined in Section 3.2, key performance metrics were

derived. At a duty cycle of D = 25%, the steady-state effective inductance per phase

(Lpss) is calculated to be 160.9 nH, and the corresponding leakage inductance (Lℓ) is

17.4 nH. These values yield a simulated peak-to-peak phase current ripple of 2.33 A

under full-load conditions.

Figure 3.17 shows how Lpss and Lℓ vary with duty ratio, based on the measured

inductance matrix. As observed in previous designs, Lpss peaks at D = 25%, 50%,

and 75% – duty cycles where the interleaved phase operation maximally reinforces

ripple cancellation. These benefits are further illustrated in Fig. 3.18, which compares

the current ripple performance of the coupled inductor against two discrete inductor

configurations.

At D = 25% with Vin = 4 V and fs = 2 MHz, the peak-to-peak ripple of the

coupled inductor is reduced by 1.3× compared to a discrete inductor with Ldisc =

LS = 125.1 nH, and by 9.2× compared to a low-inductance discrete case of Ldisc =

Lptr = 26 nH. These results reaffirm the efficacy of vertical magnetic integration and
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Figure 3.18: Comparison of peak-to-peak phase current ripple at Vin = 4 V,
fs = 2 MHz, D = 0.25 for three inductor configurations: coupled inductor, dis-
crete inductor with LS, and discrete inductor with Lptr.

interphase coupling in reducing ripple and enhancing transient behavior in compact

VRM designs.

3.4 Experimental Verification

3.4.1 Four-Phase Buck Voltage Regulator Design

To experimentally validate the electrical performance of the proposed vertically cou-

pled inductor designs, a four-phase synchronous buck voltage regulator was developed.

This converter is specifically designed to interface directly with the vertical windings

of the inductor, enabling efficient vertical power delivery in a compact layout.

Figure 3.19 shows the top-layer PCB layout of the buck converter. The four

power stages are symmetrically arranged around the center of the board, with each

phase featuring a dedicated switching node routed through vertical vias that directly

interface with the corresponding inductor winding. This via-connected layout ensures
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Figure 3.19: Top-layer layout of the four-phase buck converter power stage, high-
lighting the symmetrical placement of each MP86936 DrMOS device and associated
passive components. Switch nodes are routed vertically through vias for direct con-
nection to the coupled inductor.

a minimal path between the switch nodes and inductor terminals, thereby reducing

parasitic inductance and improving transient performance.

The assembly process is illustrated in Fig. 3.20. The vertically coupled inductor is

surface-mounted onto the buck converter PCB, with its vertical conductors soldered

to plated through-holes on both the buck board and a supporting base board. The

base board serves as an interconnect platform that delivers input power to the buck

stage and routes the regulated output from the inductor terminals to the load or

measurement interface. Output capacitors are strategically placed on the underside

of the base board to minimize loop inductance and optimize output filtering.

The complete bill of materials (BOM) for the four-phase buck converter is provided

in Table 3.4. Each power stage employs an MP86936 DrMOS device, chosen for its

high current handling capability, integrated driver and bootstrap circuit, and compact

3mm×6mm package. With careful layout and vertical integration, the total power

stage footprint is constrained to 11mm×11mm with a maximum component height

of only 0.8 mm, making it well suited for high-density, low-profile power delivery

applications.
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Figure 3.20: 3D view of the fully assembled power stage. The vertically coupled
inductor is mounted by soldering its through-windings to the via pads of both the
power stage PCB and the motherboard. Power connectors on the baseboard supply
input voltage and ground return paths.

Table 3.4: Bill-of-Materials for Four-Phase Buck VRM
Description Component Quantity

DrMOS Devices MPS MP86936GRJT-P 4

Bootstrap Capacitors Kemet 0402 25 V 0.1 µF 4

Input Capacitors
Kemet 0402 25 V 4.7 µF
TDK 0805 25 V 22 µF

4
8

Output Capacitors TDK 0805 6.3 V 100 µF 12

3.4.2 Converter Efficiency

A four-phase buck VRM is assembled with the four-phase pinwheel coupled induc-

tor as shown in Fig. 3.21. A signal board is used to provide the PWM signals,

gate drive power, and house test points for probing. Signals are generated using a

TMS320F28388D microcontroller from Texas Instruments. Cooling was performed

with one 36 CFM dc fan.

To benchmark the performance of the proposed pinwheel coupled inductors, a

baseline four-phase buck VRM was assembled using off-the-shelf discrete induc-

tors from the Coilcraft SLR4040 series. Each inductor in this series measures
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Figure 3.21: Test fixture setup for the four-phase buck VRM. The power stage evalu-
ation board contains the four-phase buck power stage, including the pinwheel coupled
inductor, as well as the base motherboard which hosts the input and output power
terminals. A TMS320F28388D microcontroller is connected to a signal board, which
generates the PWM signals, provides the gate drive power, and houses test points.
System cooling is provided by a 36 CFM dc fan.

4 mm×4 mm ×4 mm, and when arranged in a 2 × 2 configuration, the overall

footprint becomes 8 mm×8 mm – identical to that of the pinwheel coupled inductor

design #1, and only slightly smaller than the 9 mm×9 mm footprint of design #2.

Figure 3.22 visually compares the fully assembled VRM systems using either the

integrated pinwheel coupled inductor or the four discrete inductors. The height of

the pinwheel inductors is 1.8 mm for design #1 and 2.5 mm for design #2, while

the discrete inductors are each 4 mm tall. After accounting for board stack-up and

mechanical clearances, the total system heights are 3.4 mm, 4.1 mm, and 5.6 mm,

respectively. This illustrates that the pinwheel approach achieves up to 40% reduction
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Height: 3.4 mm Height: 5.6 mm
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Figure 3.22: Power stage of the four-phase buck VRM in Fig. 3.19, assembled with
the pinwheel coupled inductor design #1 (left) and four discrete Coilcraft SLR4040
inductors (right). The pinwheel-based assembly achieves a total system height of
3.4 mm, reducing the height by over 2 mm compared to the 5.6 mm height of the
system using discrete inductors.

in vertical profile – critical for enabling low-profile power modules in dense system

environments.

The Coilcraft SLR4040 series supports several inductance options, including

22 nH, 50 nH, 65 nH, 80 nH, and 100 nH. For representative comparison, two

configurations were selected:

� 22 nH, which closely matches the per-phase leakage inductance (Lℓ) of the

coupled inductor, thus serving as a baseline for ripple comparison under similar

transient response.

� 100 nH, the highest available inductance in this form factor, which offers better

ripple suppression but may limit transient performance due to slower current

ramp-up.
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Figure 3.23: Measured system efficiency of the four-phase buck VRM using the pin-
wheel coupled inductor (design 1), extended pinwheel inductor (design 2), and Coil-
craft SLR4040 discrete inductors with 22 nH and 100 nH values. All data points
correspond to DrMOS junction temperatures below 100◦C. Design 1 achieves a peak
efficiency of 91.5%, while design 2 reaches 93.5%. Both coupled inductor configura-
tions outperform the 22 nH discrete inductors by a large margin, which offer com-
parable transient performance. Compared to the 100 nH discrete inductors, design 1
exhibits slightly lower peak efficiency, whereas design 2 matches or exceeds efficiency
across the full load range.

These configurations allow a direct performance comparison between the coupled

inductor and industry-standard discrete implementations, highlighting the trade-offs

in ripple control, height reduction, and magnetic efficiency enabled by the pinwheel

architecture.

Figure 3.23 plots the measured system efficiency for all tested configurations un-

der a 4 V input, 1 V output, and 2 MHz switching frequency. Gate drive losses –
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approximately 0.43 W at 2 MHz – are excluded for consistency. Thermal conditions

were controlled by limiting operation to a maximum DrMOS junction temperature

of 100◦C, as monitored by onboard temperature sensors.

The 8×8mm2 pinwheel coupled inductor (design1) achieved a peak efficiency of

91.5% at a 55 A load, maintaining 85.9% efficiency at 100 A full load. The extended

9×9mm2 variant (design2) reached an even higher peak efficiency of 93.5% at 25 A

and sustained 85.4% efficiency at 120 A. Though the inductor is rated for up to 160 A,

testing was capped at 120 A due to the thermal limitations of the DrMOS devices.

In contrast, the VRM using 22 nH discrete inductors reached its thermal limit at

80 A, with a peak efficiency of 86.2% at 60 A and only 85.2% at full load. The low

inductance results in significant ripple current, which amplifies conduction, core, and

switching losses across the system.

When 100 nH discrete inductors were used, peak efficiency increased to 93.2%

at 40 A. However, these components suffer from limited saturation current due to

the lack of dc flux cancellation. At elevated temperatures (100◦C), the saturation

threshold per inductor drops to 17 A, leading to rapid efficiency degradation at higher

currents. Full-load efficiency fell to 87% at 90 A.

These experimental results highlight two distinct advantages of the multiphase

coupled inductor architecture:

� Improved Efficiency at Comparable Transient Performance: When

matched against 22 nH discrete inductors, which offer similar dynamic response

due to comparable leakage inductance, the pinwheel designs deliver substantially

higher efficiency. This stems from enhanced ripple suppression via multiphase

coupling, which lowers conduction, core, and switching losses.

� Superior Transient Response at Comparable Steady-State Induc-

tance: When compared with 100 nH discrete inductors – selected to match

the effective Lpss of the coupled design – the pinwheel inductor provides similar
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Figure 3.24: Loss breakdown for the four-phase buck VRM with the pinwheel coupled
inductor (design 1). Measured and calculated values are compared. DrMOS switching
and conduction losses dominate the total system loss, while inductor losses remain
minimal due to low dc resistance and vertically integrated layout.

or better efficiency while maintaining superior transient behavior, thanks to its

low leakage inductance.

Between the two pinwheel designs, the extended variant (design #2) consistently

delivers higher efficiency. This advantage is attributed to its larger cross-sectional

area for windings, improved copper utilization, and better flux path distribution due

to enhanced 3D geometry. These attributes reduce both copper and core losses,

justifying the slight increase in volume.
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Figure 3.24 shows a breakdown of the major power loss components in the VRM

system using the pinwheel coupled inductor (design1). As expected, DrMOS devices

contribute the majority of total power loss due to significant switching losses at 2MHz.

Winding losses are minimized by the inductor’s vertical straight-through conduc-

tor layout, resulting in low dc resistance – 0.09 mΩ per phase for design #1 and

0.12 mΩ for design #2. However, the compact design and higher flux concentration

increase magnetic core losses. At 55 A load, core loss alone accounts for a 1.4%

drop in peak efficiency. This trade-off underscores the design tension between ultra-

low profile and magnetic efficiency. Thinner form factors push flux density higher,

increasing core losses unless compensated with advanced magnetic design.

These results emphasize the importance of accurate core loss modeling – espe-

cially in geometrically complex, non-uniform flux structures like coupled inductors.

Traditional estimation techniques may not capture localized saturation or hysteresis

behaviors. Thus, geometry-aware and data-driven modeling methods – such as those

discussed in [67] – will be critical to future optimization of compact, high-efficiency

magnetics for power delivery applications.

3.4.3 Converter Transient Performance

To evaluate the transient performance of the system, open-loop step response tests

were conducted on three configurations: the pinwheel coupled inductor VRM (design

#1), the extended pinwheel coupled inductor VRM (design #2), and the four-phase

VRM utilizing 100 nH discrete inductors. A synchronized common-mode duty cycle

step d̃ was applied simultaneously to all four phases, and the corresponding out-

put voltage change ṽo was measured to assess the system’s dynamic response. The

resulting small-signal transfer function, Gvd = ṽo/d̃, characterizes the impact of the

inductor’s effective leakage inductance on transient behavior, as lower Lℓ typically

yields faster voltage settling [68,69].
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Figure 3.25: Output voltage response to a common-mode duty cycle step from 10%
to 25% at Vin = 4 V and fs = 2 MHz. From top to bottom: the pinwheel coupled
inductor (design #1) settles within 200 ns; the extended pinwheel coupled inductor
(design #2) settles within 400 ns; the VRM with 100 nH discrete inductors requires
approximately 1600 ns to reach its new steady state.

All three configurations were tested under identical passive and load conditions

to ensure comparability. The output stage included 22 units of Kemet 0805 C0G

capacitors (47 nF, 10 V), totaling 1.13 µF of ceramic output capacitance. A 50 mΩ
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resistive load was implemented using twenty parallel 1 Ω, 1 W, 1% 1206 chip resistors.

The applied duty cycle was stepped from 10% to 25%, which shifted the converter’s

output voltage from 0.4 V to 1 V, and the corresponding load current from 8 A to

20 A, assuming continuous conduction mode at Vin = 4 V and fs = 2 MHz.

The measured results are shown in Fig. 3.25, displaying the output voltage re-

sponse and three representative switch node waveforms for each configuration. The

VRM with design #1 settles within 2% of the new voltage level in just 200 ns. Design

#2 follows closely, settling within 400 ns. In comparison, the system using discrete

100 nH inductors takes roughly 1600 ns to reach the same settling threshold.

These results demonstrate an 8× improvement in transient speed for design #1

and a 4× improvement for design #2 relative to the discrete inductor baseline. While

the observed settling times do not exactly match theoretical predictions based on

Lℓ, such discrepancies are attributed to small variations in the effective output ca-

pacitance across test samples, which can arise from the tolerance spread inherent to

multilayer ceramic capacitors.

In summary, these measurements validate a critical advantage of the proposed ver-

tically integrated multiphase coupled inductor structures: they enable fast dynamic

response through low leakage inductance, without sacrificing steady-state ripple sup-

pression. This dual benefit makes the design well suited for next-generation voltage

regulators that must simultaneously meet stringent efficiency and transient regulation

demands under fast load transitions.

3.4.4 Tolerance to Dc Current Imbalance

In the extended 9×9 mm2 pinwheel inductor design, particular emphasis was placed

on verifying its resilience to dc current imbalance across phases – a common real-

world scenario in multiphase voltage regulators. Ideally, multiphase coupled induc-

tors achieve nearly complete dc flux cancellation when phase currents are balanced
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vsw4 (D=0.254) vsw1 (D=0.250, same for vsw2 and vsw3) 

iΦ4 (Idc,Φ4 =21.1 A ) 

iΦ1~3 (Idc,Φ1~3 =18.5 A ) 

Figure 3.26: Current waveforms and corresponding switch node voltages for the four-
phase buck VRM under intentional duty cycle mismatch. Phase 4 operates at a duty
ratio of 25.4% with a measured dc current of 21.1 A, while the other three phases
operate at nominal 25% duty ratio with approximately 18.5 A dc current. Despite
an approximately 13% current imbalance, all four phases exhibit clean, undistorted
current waveforms, indicating that the magnetic core remains unsaturated and main-
tains linear behavior.

and interleaved. However, in practical systems, control imperfections, PCB layout

asymmetries, or transient disturbances can introduce non-negligible mismatches in

current sharing, which may lead to residual net flux buildup in the magnetic core.

This residual flux increases localized flux density and can push specific regions of

the core toward or into saturation. In such cases, the self-inductance of the overloaded

phase tends to drop significantly, and core loss increases due to elevated hysteresis

and eddy current effects. Consequently, both efficiency and regulation performance
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may suffer. Therefore, ensuring robust tolerance to such imbalance is essential for

the safe and reliable operation of coupled inductors in high-current applications.

To experimentally assess this behavior, a controlled duty cycle deviation was in-

troduced in one phase of the four-phase buck converter. Specifically, the duty ratio of

phase 4 was incremented from the nominal 25% to 25.4%, while the remaining three

phases retained a nominal 25% setting. Given the fixed input and output voltages,

this small change results in a measurable increase in average current through phase

4 relative to the others.

As shown in Fig. 3.26, the measured phase currents indicate a dc current of approx-

imately 21.1 A through phase 4, compared to 18.5 A through each of the remaining

phases – amounting to a 13% current mismatch. Despite this imbalance, all four

phases exhibit well-formed triangular current waveforms with no discontinuities, dis-

tortion, or waveform clipping. Likewise, the switch node voltages remain clean and

periodic. These results confirm that the magnetic core stays well below its saturation

threshold under this imbalance scenario, and retains linear behavior.

Due to thermal constraints of the DrMOS components in the test platform, exper-

iments could not be extended to larger imbalance levels (e.g., 40 A ± 10%) without

exceeding safe temperature limits. Nevertheless, the results provide a strong indi-

cation that the extended pinwheel design offers substantial headroom against core

saturation and can maintain stable operation under realistic load mismatches.

In practical systems, perfect current sharing is difficult to maintain continuously.

Inductor designs that only perform well under balanced excitation may exhibit dra-

matic performance degradation under modest mismatch, posing risks in dynamic or

fault-tolerant environments. The demonstrated robustness of the proposed vertically

coupled inductor structure against dc current imbalance supports its deployment in

high-performance, high-reliability multiphase VRMs.
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Table 3.5: Performance Comparison between Coupled and Discrete VRM Implemen-
tation (Operating Condition: 4 V-to-1 V, and fs = 2 MHz)

Inductor
Efficiency Density

Lℓ
Peak Full Load Area Volume

Pinwheel #1
Coupled

91.5%
@ 55 A

85.9%
@ 100 A

0.83
A/mm2

3760
W/in3 26.5 nH

Pinwheel #2
Coupled

93.5%
@ 25 A

85.4%
@ 120 A

1.00
A/mm2

3960
W/in3 17.4 nH

22 nH
Discrete

86.2%
@ 60 A

85.2%
@ 80 A

0.67
A/mm2

1930
W/in3 22 nH

100 nH
Discrete

93.2%
@ 40 A

87%
@ 90 A

0.75
A/mm2

2180
W/in3 100 nH

3.5 Chapter Summary

3.5.1 Performance Benchmarking

As shown in Table 3.5, the coupled inductor designs provide a comprehensive perfor-

mance advantage across key metrics. While maintaining the same or slightly increased

lateral footprint, they reduce total system height by over 30% and boost power den-

sity, demonstrating the effectiveness of 3D magnetic integration.

In transient behavior, the coupled inductors achieve sub-500 ns settling times –

representing 4× to 8× improvement over the discrete implementations. This stems

from the low leakage inductance characteristic of coupled structures, which directly

enhances transient bandwidth without sacrificing steady-state inductance or increas-

ing ripple.

The efficiency comparison highlights another dimension of benefit. Despite their

compact vertical form factor and added inter-phase coupling, both coupled inductor

variants match or exceed the peak efficiency of the discrete 100 nH design, while

offering significantly improved thermal headroom and supporting higher peak current

operation.
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Table 3.6: Comparison of the Pinwheel Coupled Inductor Against Other Magnetics
Solutions for VRMs

Year
Inductor
Reference

Size Inductance
Winding
Resistance

Phase
Current∗

Phase
Count

Operation
FrequencyLength Width Height

Inductance
Density † γ|D=0.25‡

This
Work

Pinwheel Design #1 8 mm 8 mm 1.8 mm 6.56 nH
mm3 0.107 0.09 mΩ 25 A 4 2 MHz

This
Work

Pinwheel Design #2 9 mm 9 mm 2.5 mm 2.47 nH
mm3 0.108 0.12 mΩ 40 A 4 2 MHz

2022
Integrated Series
Asymmetrical [70]

5.21 mm 3.36 mm 0.54 mm 9.7 nH
mm3 0.521 3.1 mΩ 3 A 4 20 MHz

2023 LC Two-Phase [71] 8 mm 14 mm 1.3 mm 0.82 nH
mm3 0.580 0.15 mΩ 25 A 2 1.6 MHz

2024 MSC-PoL [72] 28.9 mm 13 mm 3.9 mm 1.67 nH
mm3 0.126 0.06 mΩ 28.1 A 4 400 kHz

2024 Mini-LEGO [58] 8 mm 8 mm 2.5 mm 7.93 nH
mm3 0.025 0.185 mΩ 20 A 4 1.5 MHz

2024 Switching Bus [73] 18 mm 5 mm 5 mm 4.62 nH
mm3 0.331 0.48 mΩ 31.3 A 2 150 kHz

2024 Twisted Core [61] 9.3 mm 8.6 mm 2 mm 0.98 nH
mm3 0.436 0.03 mΩ 65 A 2 1.5 MHz

† Inductance density is calculated using the sum of the self inductances of all of the phases divided by the
overall box volume of the inductor: Σi

(
LS,i

)
/ l × w × h.

‡ γ|D=0.25 is equal to the per-phase leakage inductance over the per-phase steady state inductance evaluated at
D=0.25: Lℓ/

(
Lpss|D=0.25

)
. A lower number indicates higher magnetic coupling.

∗ The per-phase current denotes the maximum phase current that was experimentally achieved in the testing
of the inductor.

Importantly, the extended design (design #2) validates the scalability of the pin-

wheel topology. With only marginal increases in footprint and height, it delivers

higher current capability, better thermal distribution, and improved efficiency, with-

out compromising manufacturability.

In conclusion, these results establish the vertical multiphase coupled inductor as a

high-performance, compact, and scalable solution for emerging VRM applications. Its

combination of high efficiency, fast dynamics, excellent tolerance to imbalance, and

structural simplicity makes it a strong candidate for next-generation power delivery

in space-constrained and performance-critical environments such as AI accelerators

and high-end GPUs.

Additionally, the pinwheel coupled inductors are benchmarked against a broad

set of state-of-the-art magnetic integration solutions for VRMs, as summarized in

Table 3.6. These include integrated magnetics, coupled inductor arrays, and fully

embedded power stages reported in recent literature. While each prior work offers

specific trade-offs tailored to distinct application constraints, the pinwheel structures
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introduced in this thesis demonstrate consistently strong performance across multiple

critical metrics.

Targeting the demanding regime of high-current and high-frequency operation

(typically 100 kHz to 5 MHz), the proposed inductors achieve among the smallest

magnetic volumes reported, while supporting one of the highest switching frequencies.

This is enabled by the vertical via-winding structure and compact pinwheel magnetic

geometry, which allow dense magnetic integration without compromising thermal or

electrical performance.

Both designs exhibit high inductance density and strong interphase coupling, re-

sulting in significantly enhanced steady-state inductance compared to the individual

winding self-inductance. The ratio γ|D=0.25 = Lpss/Lℓ reaches 0.107 and 0.108 for de-

sign #1 and design #2, respectively – indicating a 10× increase in ripple attenuation

relative to using discrete inductors with equivalent leakage. This confirms the abil-

ity of multiphase coupling to suppress ripple without degrading transient response.

Furthermore, the measured dc resistance values of 0.09 mΩ and 0.12 mΩ are among

the lowest reported, achieved through direct vertical windings with optimized copper

cross-sections, which effectively minimize conduction losses at high load.

Through this benchmarking, the two designs – optimized for compact (8×8 mm2)

and high-current (9×9 mm2) operation – are shown to deliver competitive or supe-

rior performance in terms of efficiency, ripple suppression, dynamic response, and

volumetric utilization. More importantly, they validate the pinwheel-based ultra-thin

coupled inductor architecture as a compelling approach for next-generation VRMs.

Building upon prior concepts in [59, 61], the proposed structures provide a scalable

solution with low profile, high current capability, and reduced loss – characteristics es-

sential for future vertically integrated power delivery systems in advanced computing

platforms.
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3.5.2 Conclusion

This chapter presents the concept of via-winding magnetics through the development

of the pinwheel coupled inductor – an ultra-thin, high-performance multiphase mag-

netic structure tailored for vertical power delivery in modern VRMs. A quantized

magnetic design methodology and systematic optimization framework were intro-

duced to enable compact, high-current coupled inductor implementations with strong

interphase coupling and minimal vertical profile.

Two prototypes were demonstrated: an 8×8 mm2, 1.8 mm-high version supporting

up to 100 A, and a 9×9 mm2, 2.5 mm-high variant capable of 160 A. Integrated

into four-phase buck VRMs operating at 2 MHz, the proposed inductors achieved

up to 93.5% peak efficiency, 1.00 A/mm2 current density, and 3,960 W/in3 power

density – while maintaining sub-400 ns transient settling and robust tolerance to

over 10% dc current imbalance. These results demonstrate the effectiveness of the

pinwheel architecture in balancing ripple suppression, dynamic response, and thermal

reliability within a compact form factor.

Overall, the vertical via-winding structure offers a promising path forward for

scalable, low-profile magnetic integration in next-generation high-power computing

platforms employing 3D heterogeneous packaging and vertically stacked VRMs.
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Chapter 4

Air-LEGO: Air-Coupled Inductors for

Ultra-thin Power Delivery

4.1 Background and Motivation

In the preceding chapters, we have explored the modeling of magnetic materials and

the design of vertically integrated coupled inductors, both of which aim to address

the pressing challenges of integrating magnetics into high-density power delivery sys-

tems. These solutions, while effective, still fundamentally rely on the presence of

magnetic core materials, which impose constraints in terms of size, thermal limits,

and loss mechanisms. An alternative and increasingly attractive direction is to elim-

inate magnetic cores entirely and instead utilize air-coupled inductors. This chapter

delves into such an approach and investigates the design, implementation, and vali-

dation of a magnetic-free voltage regulation module (VRM) architecture.

Driven by the relentless demand for computational performance in CPUs and

GPUs, modern power delivery systems must deliver high current at low voltages

within ever-tightening spatial constraints. These requirements stretch the capabil-

ities of conventional VRMs, which typically rely on ferrite-core inductors. Fig. 4.1

illustrates one such emerging concept: an ultra-thin Air-LEGO VRM designed to fit

directly into a CPU or GPU package, maintaining a total system height below 3 mm.
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Figure 4.1: Ultra-thin Air-LEGO VRM embedded into a CPU or GPU package for
compact in-package integration. The air-coupled inductor enables a system height
under 3 mm while mitigating thermal constraints.

This compact design not only satisfies form-factor requirements but also relaxes ther-

mal constraints by eliminating core losses entirely.

Magnetic-core inductors, while traditionally central to VRM functionality, present

significant limitations in advanced packaging. These include high core losses, limited

thermal tolerance, and relatively bulky dimensions, all of which hinder integration

and reliability [2,57,58]. Magnetic materials are especially vulnerable to temperature

variations, often experiencing performance degradation or failure beyond 100°C, while

modern semiconductors routinely operate at temperatures exceeding several hundred

degrees Celsius [74]. Core-dependent properties like permeability and hysteresis losses

vary significantly with operating conditions, further complicating the co-design of

power, thermal, and mechanical aspects in compact systems.

In contrast, air-core inductors offer complete immunity to such thermal instabil-

ities. Without saturation, hysteresis, or frequency limitations inherent to magnetic

cores, air-core designs can support operation at very high frequencies with excellent
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thermal performance [1, 75]. This not only simplifies thermal management but also

opens new opportunities in packaging flexibility, especially for applications where

vertical stacking and thin form factors are paramount.

Furthermore, air-core inductors are particularly well-suited for multiphase con-

figurations. Their open magnetic path allows magnetic field cancellation through

proper interleaving and placement of adjacent phases, leading to reduced ac losses,

diminished ripple currents, and improved transient response [62,66]. Designs such as

origami inductors have demonstrated the benefits of flux cancellation and enhanced

dynamics even without the assistance of magnetic cores.

This chapter introduces and evaluates the Air-LEGO architecture, an ultra-thin,

magnetic-free VRM operating at high switching frequencies. The converter utilizes

air-coupled inductors arranged in a modular and extendable structure to achieve a

low-profile solution suitable for in-package integration. Through analytical modeling,

finite element simulation, and experimental validation, we demonstrate the feasibility

and benefits of air-core solutions while addressing the key design challenges they

introduce.

� The design and realization of an ultra-thin air-core VRM module that meets the

demanding current and voltage requirements of high-performance computing;

� Analysis of the performance trade-offs between different winding configurations

and their impact on loss mechanisms and EMI;

� Experimental verification of the proposed architecture in a high step-down

application, validating the practical viability of air-core inductors for future-

generation power delivery.

The rest of this chapter is organized as follows: Section 4.2 introduces the cir-

cuit topology and operating principles of the Air-LEGO architecture. Section 4.3

discusses the design considerations and simulation results of air-coupled inductors.
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Section 4.4 presents the experimental results of the Air-LEGO prototype, highlight-

ing both the feasibility and limitations of adopting air-coupled inductors in practical

VRM applications. Finally, Section 4.5 summarizes the findings and insights of this

chapter.

4.2 LEGO Architecture and Operation Principles

The Air-LEGO voltage regulator module (VRM) adopts the Linear-Extendable Group

Operated (LEGO) framework [57, 76], as shown in Fig. 4.2. This architecture is

characterized by a series-connected input stage and a parallel-connected output stage,

making it particularly advantageous for high-current applications that demand large

voltage step-down ratios. The LEGO system is composed of two major components:

a front-end 2:1 switched-capacitor (SC) array configured in a series-stacked manner,

and a backend multi-phase buck stage employing coupled inductors.

In the Air-LEGO implementation, the first stage takes an input of 24 V and

steps it down to three 4 V intermediate voltages through three series-stacked 2:1

SC submodules. This stacked configuration ensures equal voltage sharing among the

submodules, reduces the voltage stress on each unit, and allows for the use of lower-

voltage-rated components. As a result, the reliability of the system is enhanced, and

the component selection is simplified.

The second conversion stage is responsible for further stepping down each 4 V in-

termediate node to the target output, such as 1 V. This is achieved through three buck

converter submodules, each implementing two interleaved phases. The duty cycle for

each phase is approximately 25%, which allows for high current capability and helps

suppress output voltage ripple. The interleaving of the two phases in each submodule

promotes thermal distribution, minimizes electromagnetic interference (EMI), and

enhances the overall power delivery efficiency. Each individual phase can deliver up

to 20 A, allowing the full system to supply a total of 120 A output current.
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Figure 4.2: Principles of LEGO architecture, consisting of three series-stacked
switched-capacitor submodules and three paralleled multi-phase buck submodules
with coupled inductors. LEGO architecture provides large voltage conversion ratio
and high current capacity with reduced switch stress for high current VRM applica-
tions.

The modular and scalable design of the LEGO architecture also enables easy

adaptation to varying power requirements. By adding more series-stacked SC units

or parallel buck submodules, the system can be extended to support a wider range

of input-output conversion ratios or increased current demands, providing flexibility

for various power delivery applications in modern computing platforms.

The gate-driving method for the LEGO architecture is illustrated in Fig. 4.3. The

2:1 SC units operate at relatively low frequency (on the order of hundreds of kHz),

using two gate signals (ϕ1 and ϕ2) that alternate with a 50% duty cycle and 180◦

phase shift. This low-frequency operation reduces switching losses in the SC stage.

In contrast, the buck stage operates at a much higher frequency with interleaved
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Figure 4.3: Theoretical gate drive modulation strategy of LEGO architecture. The
switched-capacitor unit is driven by low frequency 50% duty ratio square waves with
180◦ phase difference. The two-phase buck unit is driven by a higher frequency
sequence with desired duty ratio, where two phases are 180◦ interleaved. Soft-charging
of capacitors, zero-current switching of SC unit, and phase current balancing through
phase rotation are achieved.

control between its two phases, which helps suppress output ripple and improves

transient response and control bandwidth.

An important innovation of this architecture lies in the seamless integration of the

SC and buck stages. Unlike traditional two-stage converters, there is no need for either

a resonant inductor in the SC stage or a bulky decoupling capacitor between stages.

The SC and buck units work in tandem: the buck stages behave like programmable

current sources that softly charge the capacitors in the SC units. The capacitors are

dynamically charged and discharged by the current supplied from the buck stages.

By carefully synchronizing the gate drive signals, the inductor current from the buck

stage flows through the SC network only when the high-side switches are on. This

coordinated timing ensures that the switching of SC transistors happens during the

zero-current periods, achieving Zero-Current Switching (ZCS) and thereby minimizing

switching losses in the SC stage.
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To further enhance system-level efficiency and robustness, the architecture also

incorporates automatic current balancing among buck phases. The absence of a large

dc-link capacitor leads to greater ripple in the intermediate voltages, which may

cause phase current imbalance. To address this, a passive phase-rotation mechanism

is used [57]. If the switching frequency of the buck stage satisfies:

fBuck = (2k + 1) · fSC , k = 1, 2, 3... (4.1)

where fBuck and fSC denote the switching frequencies of the buck and SC stages,

respectively, the buck phase switches cycle through different positions within the

SC switching period. As an example, if fBuck = 5fSC , then five buck switching

events occur per SC cycle, enabling each phase to encounter a different portion of

the intermediate bus ripple. This dynamic phase rotation ensures balanced average

input conditions across the phases and promotes even current sharing, improving

performance and reducing thermal stress.

4.3 Air-Coupled Inductor Design

Designing the air-coupled inductors used in the Air-LEGO architecture involves care-

ful optimization of winding geometry to achieve an effective balance among self-

inductance, mutual inductance, and winding resistance. As illustrated in Fig. 4.4,

the basic structure of the two-phase air-core inductor includes two turns per phase

and is defined by three key parameters: l1, l2, and l3. These dimensions collectively

determine the inductor’s electromagnetic performance. The region defined by the

product l2× l3 determines the area of overlap between the two phases, which directly

influences the mutual coupling coefficient. Higher coupling improves ripple cancella-

tion and energy transfer but can also introduce parasitic coupling effects. The segment

represented by l1 is primarily decoupled and contributes to the self-inductance, of-
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Figure 4.4: Basic geometry of the two-phase air-coupled inductor. Three parameters
need to be determined, where the coupling factor between two phases is mostly de-
termined by l2 and l3, while l1 provides additional self-inductance.

fering design flexibility. In contrast, l3 is constrained by the spatial footprint of the

power components and cannot be significantly modified without impacting layout.

Therefore, tuning l1 and l2 becomes essential in optimizing the inductor design for

performance and efficiency. To explore this design space, extensive simulations were

performed, sweeping l1 and l2 values to evaluate resulting changes in self-inductance,

mutual inductance, and dc resistance. The results are summarized in Fig. 4.5.

From the parameter sweep results, an optimal geometry was selected with l1 set

to 12 mm and l2 set to 8 mm. This configuration achieves a practical trade-off

by delivering sufficient self-inductance and coupling, while maintaining manageable

winding resistance and enabling overall system performance.

For designs using PCB windings, implementing layer interleaving is an essential

strategy to combat frequency-dependent losses such as the skin and proximity effects

[5]. Figure 4.6 shows the simulated current density in an 8-layer PCB with and

without interleaving. The interleaved layout demonstrates a significantly lower ac
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Figure 4.5: Simulation results with parameter sweeping for different l1 and l2 combi-
nations: (a) self inductance per phase; (b) coupling coefficient between phases; and
(c) Dc resistance per phase.

resistance (Rac), as the current distribution becomes more uniform across layers. In

comparison, the non-interleaved structure suffers from severe crowding effects, leading

to an ac resistance approximately 2.25 times higher. Interleaving reduces these losses,

contributing directly to improved efficiency.
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Figure 4.6: Simulated current density distributions for interleaved structure (top)
and non-interleaved structure (bottom), where interleaving greatly mitigates the skin
effect and proximity effect, and reduces the winding ac resistance.

In addition to reducing losses, interleaving also plays a significant role in limiting

fringing magnetic fields. Air-core inductors inherently pose challenges in terms of

EMI due to unconfined stray flux. However, by carefully arranging conductors in

an interleaved pattern, opposing magnetic fields can partially cancel each other. As

shown in Fig. 4.7, this cancellation effect confines most of the flux to the vicinity of the

winding plane, reducing electromagnetic emissions. This is particularly advantageous

in compact, high-density VRMs where EMI compliance is a critical concern. The use

of interleaving thus not only boosts efficiency but also improves system compatibility.
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Figure 4.7: Simulated flux density distributions for interleaved structure (top) and
non-interleaved structure (bottom), where interleaving effectively minimizes fringing
flux and confines it around the winding plane.

Figure 4.8: The interleaved winding structure in this design, where each phase con-
tains two sets of parallel windings, and the two phases are fully interleaved in an
8-layer PCB stack.

Additional magnetic shielding sheets can also be applied to further suppress stray

fields and enhance EMI performance.

The chosen interleaving structure is shown in Fig. 4.8, where each phase consists of

two parallel winding sets and is fully interleaved with the opposite phase across an 8-

layer PCB stack. This approach enhances coupling, reduces both dc and ac resistance,
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Figure 4.9: Pictures of the air-coupled inductors: (a) PCB traces as windings; (b)
Litz-wire as windings.

Table 4.1: Comparison of PCB-winding inductor and Litz-wire inductor.

Winding
Type

Rdc

[mΩ]
Rac[mΩ]
@2MHz

Ls

[nH]
Lm

[nH]

PCB Traces 4.46 17.9 47.56 -27.83
Litz
Wire 3.51 11.8 60.21 -34.85

and minimizes EMI as discussed. Importantly, the added parasitic capacitance from

such interleaving did not introduce observable issues in practical testing.

For Litz-wire inductors, a similar geometry was employed to match the PCB

counterpart in terms of dimensions and electromagnetic characteristics. The selected

wire bundle has a thickness close to that of the PCB stack, helping preserve the

converter’s low-profile mechanical design. A custom bobbin and frame were fabricated

to hold the Litz windings in place, ensuring good alignment and consistent inductance.

As depicted in Fig. 4.9, the final inductor designs include both PCB-based and

Litz-wire implementations. The PCB version uses a pair of 8-layer PCBs with 1 oz

copper, producing a combined thickness of 2.1 mm. The Litz-wire version is composed

of 300 strands of 46 AWG wires, pressed to a similar total thickness. The comparison

table (Table 4.1) summarizes key electrical parameters. While PCB windings support

better manufacturability and integration, the Litz version shows lower ac resistance
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4. Air-LEGO: Air-Coupled Inductors for Ultra-thin Power Delivery

Figure 4.10: Pictures of the Air-LEGO prototype (with PCB-trace inductors) from
front, back, and side views, achieving a low profile of 3 mm.

and superior high-frequency efficiency. Consequently, the decision between the two

options depends on application priorities – space and consistency versus performance

and loss minimization. Both designs demonstrate the importance of careful magnetic

layout and integration in advanced VRMs.

4.4 Experimental Results

To verify the practicality and performance of the Air-LEGO converter, a fully as-

sembled prototype was developed and subjected to comprehensive testing. In the

switched-capacitor (SC) stage, the floating switches are realized using Onsemi NT-

TFD2D8N03P1E dual-channel MOSFETs, driven by Infineon 2EDF7275K isolated

gate drivers. To supply the required gate voltage for the floating switches, a TI

UCC27212 charge pump is employed. The remaining switches in the SC stage utilize
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4. Air-LEGO: Air-Coupled Inductors for Ultra-thin Power Delivery

Figure 4.11: Pictures of the testing platform, including dc power supplies, electronic
loads, digital multimeters with current shunts for power measurement, and an oscil-
loscope.

Onsemi FDMF3039 DrMOS modules, selected for their compact integration and ef-

ficiency. All buck-stage switches are implemented using Infineon TDA21490 DrMOS

modules, known for supporting high-frequency operation and low conduction losses.

The SC and buck stages operate at switching frequencies of 400 kHz and 2 MHz,

respectively.

Figure 4.10 displays the completed prototype using PCB-based inductors. The

image highlights the compact and flat integration of the air-coupled inductors, which

contribute significantly to the converter’s thin profile. The air-core design not only

removes the thermal constraints typically imposed by magnetic cores but also intro-

duces design flexibility. Additionally, a second prototype with Litz-wire inductors was
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𝑇𝑆𝐶

2
= 1.25 μs

𝑇𝐵𝑢𝑐𝑘 = 500 ns

180°

𝑣𝑏𝑢𝑠 = 4 V

4 V

4 V

𝑣𝑜𝑢𝑡 = 1 V

Figure 4.12: Key experimental waveforms of the Air-LEGO prototype: (a) switched-
capacitor stage 400 kHz gate drive signals, with 50% duty ratio and 180◦ phase shift;
2 MHz two-phase gate drive signals for one of the buck submodules, with 180◦ phase
interleaving. (b) 4 V intermediate bus voltage, two-phase interleaved buck stage
switch node voltage, and 1 V output voltage.

fabricated using the same overall design. The interface compatibility between the two

types of inductors allows direct performance comparison under identical conditions.

The testing platform setup is shown in Fig. 4.11, featuring a dc power supply,

electronic load, precision shunt-based multimeters for power monitoring, and an os-

cilloscope for waveform analysis. During the evaluation, cooling was provided using a

single dc fan without any heat sink, demonstrating the converter’s inherent thermal

efficiency. The flat inductor design enables direct attachment of a heat sink, which
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Figure 4.13: Thermal image of the Air-LEGO prototype with PCB windings at 24-
to-1 V operation and 120 A output current. The DrMOS modules in the buck stage
shows the highest temperature.

can simultaneously cool both the inductors and semiconductor devices. This co-

thermal solution simplifies heat management and enhances system reliability during

high-power operation.

Representative waveforms are presented in Fig. 4.12, confirming correct operation

and expected switching patterns. Fig. 4.13 shows a thermal snapshot of the prototype

under full-load operation (120 A at 1 V), where the buck-stage DrMOS devices exhibit

the highest temperature, aligning with expectations from power dissipation analysis.

Efficiency testing was carried out across various input voltages and buck-stage

switching frequencies, as summarized in Fig. 4.14. The Litz-wire inductor variant

consistently outperformed the PCB version, achieving a peak efficiency of 85.9%

compared to 75.8%. Under full-load conditions, the efficiencies dropped to 73.1%

and 62.5%, respectively.

The following observations offer deeper insights:

� Impact of inductor implementation: The higher efficiency of the Litz-wire

version is attributed to significantly lower resistive losses, as detailed in Ta-

ble 4.1. Despite similar geometries, PCB windings suffer from high resistance
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Figure 4.14: Measured efficiency of the Air-LEGO prototype with either the Litz-wire
inductors or PCB winding inductors, at different input voltages and different buck
stage switching frequencies, excluding consumption of gate drives. Prototype with
Litz-wire air-coupled inductors demonstrates higher efficiency.

due to limited copper thickness, particularly in dc conditions. Moreover, the

Litz-wire design more effectively suppresses skin and proximity effects, espe-

cially at MHz-level switching frequencies. However, PCB windings offer advan-

tages in manufacturability and consistency, while Litz wire solutions are more

challenging to scale due to manual winding variations. Minor differences in in-

ductance values also influence performance, but the dominant factor is resistive

loss.

� Effect of switching frequency: Although higher switching frequencies gen-

erally incur more switching loss, in this design, the use of air-core inductors –

having relatively low inductance – leads to significant ripple current. At lower

frequencies (e.g., 1.2 MHz), this ripple increases resistive losses, offsetting the

benefits of reduced switching loss. Therefore, 2 MHz operation yields better ef-
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Figure 4.15: Calculated loss breakdown of the Air-LEGO prototype during 24 V-to-
1 V operation at 2 MHz with PCB-winding inductors. The switched capacitor stage
loss is split into switching and conduction losses due to the switches, losses due to
the capacitors. In the buck stage, the loss is divided into the device switching and
conduction losses and the winding from the air-coupled inductors.

ficiency under most conditions, except under light load, where switching losses

dominate and lower frequency slightly improves performance.

� Influence of input voltage: Larger conversion ratios typically reduce effi-

ciency, and results confirm this trend. At higher input voltages (e.g., 48 V),

the buck stage must operate at very low duty cycles (e.g., 12.5%), increasing

ripple and losses. For this reason, the prototype is optimized for 24 V and 18 V

input. However, using over-rated devices for these lower voltages adds unneces-

sary conduction and switching losses due to higher RDS(on) and Coss. At 18 V,

efficiency degradation at high load is caused by the SC stage losing its ZCS

operation and transitioning into hard-switching mode, significantly increasing

switching losses.
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Figure 4.15 provides a breakdown of loss components during 24 V to 1 V conversion

at 2 MHz. The dominant losses originate from the DrMOS devices in the buck

stage, consistent with the thermal profile shown in Fig. 4.13. These losses stem from

conduction losses due to RDS(on), as well as capacitive switching losses related to Coss.

The air-coupled inductors also contribute significantly to total loss due to their

large dc and ac resistances, as well as increased current ripple from their limited

inductance. Beyond 60 A of output current, the SC stage begins losing its soft-

switching condition and enters hard-switching mode, exacerbating switching losses

and further lowering efficiency.

These findings inform several optimization directions for future Air-LEGO designs.

Improvements include selecting appropriately rated switching devices for lower voltage

operation, redesigning the air-core inductors to increase inductance while minimizing

resistance, and preserving the system’s low-profile geometry. Such refinements will

be crucial for enhancing both efficiency and thermal management in next-generation

VRM systems.

4.5 Chapter Summary

This chapter has demonstrated the feasibility and potential of integrating air-coupled

inductors into voltage regulator module (VRM) designs, achieving ultra-thin profiles

and high levels of integration. By removing magnetic cores, the proposed architecture

eliminates the thermal constraints and core losses typically associated with conven-

tional magnetic materials. This design choice not only simplifies thermal management

but also expands the flexibility of VRM placement and cooling strategies, enabling

novel integration opportunities for advanced power delivery systems.

Experimental validation confirmed that Litz-wire windings outperform PCB-based

windings, primarily due to their lower ac and dc resistance at the targeted 2 MHz

switching frequency. The benefits of Litz wire become especially pronounced under
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high-current operation, where resistive losses dominate. Additionally, proper winding

interleaving was shown to be essential not only for reducing high-frequency ac losses

but also for suppressing fringing flux, thereby addressing electromagnetic interference

(EMI) concerns. These findings emphasize the importance of careful geometric design

and layout when implementing air-core inductors.

Nonetheless, the prototype also revealed several efficiency bottlenecks. Both the

switched-capacitor (SC) stage and the buck stage incurred considerable power losses

within their switching devices. Furthermore, the winding losses of the air-coupled

inductors – driven by their relatively large resistance and low inductance – constitute a

non-negligible portion of the total power loss. These results underscore a fundamental

trade-off in air-core inductor-based VRM designs: while compactness and thermal

simplicity are significantly improved, they often come at the cost of reduced electrical

efficiency.

Future efforts will focus on optimizing the device selection, refining the air-core

inductor geometry, and further reducing parasitic losses to enhance the overall system

performance. Through these improvements, the Air-LEGO architecture may become

a promising solution for high-current, high-density power delivery in next-generation

computing platforms.
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Chapter 5

Conclusion

5.1 Conclusion

This dissertation presents a comprehensive exploration of data-driven and hybrid ap-

proaches for modeling and designing magnetic components in power electronics. In

response to the growing demands of high-density computing platforms and the lim-

itations of traditional magnetics, this work addresses fundamental challenges across

the modeling, optimization, and integration of power magnetics, aiming to unlock

new levels of performance, compactness, and adaptability.

Magnetic components play a pivotal role in power conversion systems, serving

as energy buffers, current regulators, and EMI filters. Yet they remain the most

bulky, lossy, and difficult-to-model elements in modern power converters. With the

advent of vertical power delivery (VPD) architectures and chiplet-based packaging,

the miniaturization and co-design of magnetics have become more urgent than ever.

This dissertation introduces data-driven techniques and hybrid design methodologies

to break existing bottlenecks, leveraging machine learning and structural innovations

to overcome long-standing modeling and design challenges.

The contributions of this thesis are structured into three core directions:
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1. Data-driven Modeling of Power Magnetics: Chapter 2 presents a data-

centric framework for modeling the nonlinear behavior of magnetic materials.

A high-resolution experimental platform is developed to measure the B–H re-

sponse and core losses across a wide range of operating conditions. The resulting

database, MagNet, enables the training of neural network models – including

LSTM and Transformer architectures – that serve as “neural datasheets” ca-

pable of accurate prediction and generalization. Transfer learning methods are

also proposed to reduce the data burden for new materials. These models can

compress, extrapolate, and recommend material behavior with high fidelity, of-

fering a transformative tool for magnetic material evaluation and system-level

optimization.

2. Design of Ultra-thin Multiphase Coupled Inductors: Chapter 3 focuses

on the design and optimization of ultra-compact, high-current magnetics for

vertical VRM integration. A novel via-winding structure combined with ver-

tically coupled pinwheel cores is proposed to facilitate low-impedance current

delivery with minimal vertical height. A co-optimization framework accounts

for current balancing, thermal constraints, and core material selection. Two

high-performance prototypes are demonstrated, supporting up to 160 A in a

footprint below 9Ö9 mm2 and achieving power densities exceeding 3,900 W/in3.

These results validate the feasibility of scalable magnetic integration for next-

generation PoL converters.

3. Magnetic-Free Power Delivery with Air-Coupled Inductors: Chapter 4

explores an alternative route – air-core magnetics – for achieving ultra-thin

VRMs with minimal EMI and excellent thermal profiles. The Air-LEGO ar-

chitecture adopts stacked switched-capacitor and buck stages, using PCB or

Litz-based air-coupled inductors in each phase. This design eliminates lossy
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magnetic cores while retaining performance, with each phase capable of deliver-

ing 20 A. A complete 24-to-1 V, 120 A prototype demonstrates the practicality

of magnetic-free designs in compact, modular, and EMI-conscious systems.

Collectively, these contributions form a cohesive advancement in the modeling and

design of magnetic components for high-performance power electronics. By bridging

the gap between empirical modeling and data-driven inference, and between discrete

magnetics and co-designed integration, this thesis offers new pathways for efficient,

scalable, and miniaturized power delivery systems.

5.2 Future Work

Building on the foundations laid in this dissertation, several compelling future re-

search directions emerge that could further enhance the modeling, design, and inte-

gration of power magnetic components. These directions aim to deepen the inter-

action between data-driven intelligence and physical constraints, improve co-design

methodologies, and enable adaptive and scalable system-level implementation.

1. Circuits–Magnetics–Thermal Co-Design: While this work has emphasized

the electrical and magnetic design dimensions, thermal constraints remain a crit-

ical limiting factor for high-density power electronics. Future research should

explore unified co-design frameworks that simultaneously consider circuit per-

formance, magnetic coupling, and thermal dissipation. Such frameworks can

incorporate thermally-aware magnetic layout, 3D heat spreading models, and

active cooling strategies to optimize total system performance. Machine learn-

ing methods may be leveraged to predict hotspot locations or optimize winding

patterns for uniform heat distribution, especially in tightly stacked VPD envi-

ronments.
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2. In-situ Characterization and Adaptive Modeling: As power electronics

systems become increasingly dynamic, static models built from offline measure-

ments may no longer suffice. Future magnetics modeling frameworks should

incorporate in-situ characterization – using embedded sensors or real-time cur-

rent/voltage monitoring – to adaptively update core loss predictions and hys-

teresis behavior under actual operating conditions. Coupling this with neural

models that support online learning or lightweight re-training would enable real-

time adaptation to changes in temperature, aging, or input waveform distortion,

enabling more resilient and efficient systems.

3. Physics-Informed Neural Networks (PINNs): A promising direction is

to incorporate domain knowledge into neural network architectures via physics-

informed neural networks (PINNs). For power magnetics, this could include em-

bedding Maxwell’s equations, hysteresis constraints, or core saturation bound-

aries directly into the training loss functions. Such hybrid modeling approaches

can improve generalization, reduce required training data, and ensure physi-

cally plausible predictions. Additionally, PINNs may help resolve long-standing

issues in extrapolation or data-sparse regimes, which are common in exotic ma-

terials or rare operating conditions.

4. Integration with EDA Tools and Design Automation: Neural magnetic

models developed in this thesis are currently used in standalone workflows. Fu-

ture work should focus on integrating these models into mainstream electronic

design automation (EDA) tools, enabling automated magnetics-aware optimiza-

tion in circuit simulators and layout engines. With APIs or plug-ins for SPICE,

LTspice, or Cadence tools, designers could query neural models directly to eval-

uate material trade-offs, predict ripple and loss behavior, or synthesize inductor
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geometries, greatly streamlining the magnetic co-design process in power elec-

tronics.

5. Standardized Datasets and Benchmarking: The absence of publicly avail-

able, high-fidelity datasets for magnetic materials remains a key obstacle. Build-

ing on the open-source MagNet database, a standardized community effort is

needed to benchmark modeling methods under consistent protocols. This would

accelerate research reproducibility, facilitate fair comparison between empirical

and machine learning models, and foster collaborative tool development across

academia and industry. An open evaluation suite could include diverse mate-

rials, excitation conditions, and core geometries to benchmark accuracy, speed,

and data efficiency.

6. Cross-Domain Transfer and Generalization: Finally, expanding the scope

of learned models beyond magnetics into adjacent domains – such as capaci-

tors, thermal interface materials, or EMI shielding – opens the door to unified

component modeling. Transfer learning techniques could be explored to allow

models trained on ferrite materials to generalize to amorphous cores, or even

extrapolate from one frequency range to another. Combining these approaches

with generative design and topology optimization frameworks could yield fully

automated power module generation from specification to layout.
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Appendix A

Detailed Implementation of Automated

Data Acquisition System

Here we introduce more details about the design and implementation of the data

acquisition system in the following aspects:

A.1 Excitation

The data acquisition system supports multiple excitation waveforms, including sinu-

soidal, triangular, and trapezoidal shapes, enabling comprehensive characterization of

power magnetics under realistic operating conditions. These excitations are essential

for accurately assessing magnetic behavior, especially core loss and hysteresis, which

are strongly waveform-dependent.

For sinusoidal excitation, the system employs a function generator (Rigol DG4102)

coupled with a power amplifier (Amplifier Research 25A250AM6). The frequency and

amplitude of the waveform are programmatically controlled via the host PC, which

communicates with the function generator to sweep through a range of operating

points. Due to the non-constant gain of the power amplifier – especially under vary-

ing load impedance and magnetic nonlinearity – calibration is performed for each

excitation point to ensure measurement accuracy. When large Bac excitations are
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Figure A.1: Circuit schematic of the power stage for generating the excitations and
measuring the magnetic component behaviors in the data acquisition system of Mag-
Net.

Voltage
supply
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Power
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DUT
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iL = ishunt = Idc + iac
Figure A.2: Circuit schematic of the auxiliary dc-bias current injection circuitry for
the measurements under dc-bias conditions.

used, the amplifier may enter a nonlinear regime, resulting in waveform distortion.

This distortion affects both the voltage and current measurements, particularly at low

impedance conditions or near magnetic saturation. Consequently, waveform quality

is closely monitored, and points with excessive distortion are either discarded or re-

placed.
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For piece-wise linear waveforms such as triangular and trapezoidal signals, the ex-

citation is synthesized using a T-type inverter topology powered by two programmable

dc supplies (B&K Precision XLN60026), as illustrated in Fig. A.1. This topology al-

lows the generation of three voltage levels [Vin; 0;−Vin] to approximate linear transi-

tions in the magnetic excitation. High-speed GaN devices (GaN Systems GS66508B)

are used in the switching stage to achieve fast and clean transitions. The waveform

generation is controlled by a microcontroller (Texas Instruments F28379D control-

CARD), which issues precise PWM signals to the gate drivers. All parameter sweeps

– including duty cycle, frequency, and amplitude – are synchronized and iterated

automatically via the host PC.

A blocking capacitor is inserted in series with the DUT to eliminate any unwanted

dc bias originating from either the switching stage or the power amplifier. This ensures

that only the intended excitation waveform is applied. The capacitor must have a

sufficiently large value to avoid low-frequency voltage droop that could distort the

excitation waveform. In this implementation, a 100 µF, 100 V film capacitor is used

to ensure minimal impedance at the lowest operating frequencies.

To enable characterization under dc bias, an auxiliary injection circuit is included

in the setup (see Fig. A.2). Rather than using a separate third winding – which may

introduce unwanted ac ripple due to coupling – the dc bias is injected directly into

the primary winding, downstream of the blocking capacitor. This topology isolates

the dc current path from the ac excitation. A mirror transformer and a filter inductor

are employed to prevent voltage disturbances from the DUT reflecting back to the

dc source. The bias current is supplied by a programmable voltage source (Siglent

SPD3303X-E), with its current limit automatically set by the host PC. This approach

allows flexible and stable dc biasing without interference with the main excitation.

It is important to note that dc bias is defined and controlled in terms of magnetic

field strength (Hdc), not magnetic flux density (Bdc). This is because the initial
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magnetization state (B0) of the core is generally unknown and cannot be easily reset

or controlled between measurements. As explained in [24], the mapping between

Hdc and Bdc is nonlinear and path-dependent, making Bdc an unreliable metric for

repeatable experimental conditions. Therefore, Bdc is not reported in this study, and

all dc bias levels are expressed in terms of Hdc for consistency and clarity.

A.2 Device Under Test

The Device Under Test (DUT) is composed of a toroidal magnetic core with a pair

of windings: a primary winding responsible for excitation and a secondary winding

used for sensing. The primary winding is connected to the power stage to deliver the

required excitation waveform, while the secondary winding remains open-circuited

and is used to infer the time-varying magnetic flux density B(t) by numerically in-

tegrating the voltage induced across its terminals. This approach conforms to the

standard two-winding (voltamperometric) characterization method.

In this work, the majority of DUTs are fabricated using toroidal cores with di-

mensions approximately R34.0×20.5×12.5mm, which aligns with typical form factors

found in commercial magnetic material datasheets. While it is acknowledged that core

geometry can influence the measured magnetic characteristics – particularly the flux

distribution and eddy current paths – these geometric effects are outside the scope

of the current study. For more detailed discussions on geometry-induced variation in

B–H loop shape and core loss, we refer the reader to [6].

The number of turns for the DUT windings is carefully selected to balance several

competing design constraints. On one hand, the number of turns must be sufficiently

large to enable a broad operating range of flux density and frequency within the

voltage and current ratings of the system. On the other hand, increasing the turns

elevates the inductance of the DUT, which may result in excessive current demand

and violate the current limits of the excitation stage. As a practical design example,
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for characterizing a TDK N87 toroidal core in this system, both the primary and

secondary windings are configured with 5 turns. The primary winding uses 22 AWG

Litz wire, composed of 40 strands of 38 AWG filaments, optimized for minimum ac

resistance at around 100 kHz. The secondary winding, which ideally carries zero

current, is wound with standard 18 AWG solid copper wire.

As recommended in [77], ungapped toroidal cores are employed in this study, as

they provide a closed magnetic path that minimizes external field leakage and enables

more reliable measurements of intrinsic magnetic behavior.

A.3 Measurement and Acquisition

Voltage and current waveforms are simultaneously recorded using a high-speed 8-bit

oscilloscope (Tektronix DPO4054), configured to acquire 10,000 samples per measure-

ment window at a sampling interval of 10 ns, yielding a total time span of 100 µs per

trace. Depending on the frequency of the excitation, this duration captures multiple

switching cycles, thereby enabling accurate reconstruction of both steady-state be-

havior and waveform-dependent losses. To suppress high-frequency switching noise

– especially in triangular and trapezoidal excitations – the oscilloscope bandwidth is

limited to 20 MHz via built-in filtering.

For voltage measurements, a low-capacitance passive probe (Tektronix P6139A)

is used to minimize capacitive loading and preserve waveform fidelity. The current

flowing into the DUT’s primary winding is measured using a precision coaxial shunt

resistor (T&M Research W-5-10-1STUD) with a resistance of 0.983 Ω, chosen for

its superior frequency response and minimal phase error compared to conventional

current probes [24, 25, 78]. The oscilloscope input channel connected to the shunt is

terminated with 50 Ω, and this termination is explicitly accounted for during current

calculation to ensure measurement accuracy [24].
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This acquisition configuration ensures accurate and reproducible extraction of

B(t) and H(t) waveforms across a wide range of operating conditions. These wave-

forms serve as the foundation for computing core loss, hysteresis characteristics, and

training data for machine learning models.

A.4 Temperature Control

Temperature is a critical factor in magnetic characterization, as magnetic core losses

are highly sensitive to thermal variations. Even small changes in temperature can lead

to significant deviations in the measured B–H loop and core loss, especially in high-

frequency applications. However, controlling temperature during measurements is

inherently difficult, since the DUT naturally heats up due to internal power dissipation

during excitation.

To achieve stable and repeatable temperature conditions, a dedicated thermal

control system is employed. The DUT is submerged in a mineral oil bath, which

offers both electrical insulation and excellent thermal conductivity. This oil bath

is itself enclosed in a larger water tank, whose temperature is regulated using a

precision water heater (ANOVA AN400). To ensure thermal equilibrium between the

oil and water, the tank is sealed to prevent heat loss, and sufficient time is allowed

for thermal settling. A magnetic stirrer (INTLLAB) is placed under the oil bath to

ensure continuous fluid circulation, which prevents localized hot spots and maintains

the DUT at a temperature close to that set by the water heater.

This setup allows accurate control of the DUT temperature over extended mea-

surement sessions, thereby improving the consistency and reproducibility of the mag-

netic characterization process across different thermal conditions.
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A.5 Software System

A Python-based software interface running on the host PC manages the coordination

of all hardware subsystems and enables fully automated control, measurement, and

data collection. The system is specifically designed to facilitate large-scale, unat-

tended data acquisition across multidimensional parameter sweeps.

The software performs three main functions:

� Excitation Configuration: It communicates with the power stage – including

power supplies, the function generator, and a microcontroller unit – to configure

and transmit the waveform properties for each test condition. These properties

include waveform shape (e.g., sinusoidal, triangular, trapezoidal), frequency,

and amplitude. This allows the power stage to generate the correct excitation

for each test case.

� Measurement Execution: It communicates with the oscilloscope to configure

the acquisition settings, including sampling rate and bandwidth filtering. The

system can also trigger calibration routines as needed and retrieve the digitized

voltage and current waveforms for post-processing.

� Data Storage and Formatting: It processes the acquired waveforms and

stores them in a standardized format, ready for downstream use in machine

learning models or physics-based analysis. The software handles data parsing,

compression, and metadata tagging for each measurement.

To implement these functionalities, the communication with the microcontroller

is handled via the UART (Universal Asynchronous Receiver-Transmitter) protocol,

while interaction with external lab instruments – such as the oscilloscope, function

generator, and programmable power supplies – is managed through the VISA (Virtual

Instrument Software Architecture) standard.
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Figure A.3: Range of measurement for the flux density amplitude and the frequency.

These operations are executed within a hierarchical control loop structure that

systematically iterates over the full multidimensional parameter space – spanning

frequency, flux density, waveform shape, temperature, and dc bias – without the need

for human intervention. Only three manual operations are occasionally required: (1)

switching between sinusoidal and piecewise-linear excitation modes, (2) changing the

DUT, and (3) setting the desired bath temperature for thermal control.

A.6 Range of Measurement

The operational range of the data acquisition system must be carefully defined to

ensure the quality, relevance, and accuracy of the collected data. This range is con-

strained by the physical limitations of the hardware, the thermal properties of the

materials under test, and the measurement accuracy under various excitation condi-

tions. The coverage of flux density amplitude and frequency for the measurements in

this work is summarized in Fig. A.3.
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Flux Density Amplitude and Frequency Flux density amplitudes (Bac) are

swept from 10 mT to 300 mT in 36 logarithmically spaced steps. The use of a loga-

rithmic scale allows for more uniform coverage of the core loss response, which tends

to exhibit exponential dependence on Bac. The upper bound of 300 mT is chosen

to remain sufficiently below the saturation flux density specified in manufacturer

datasheets, thereby preventing waveform distortion and ensuring safe operating con-

ditions. The lower bound of 10 mT is selected to ensure a sufficient signal-to-noise

ratio during low-amplitude measurements.

For frequency, measurements are taken from 50 kHz to 500 kHz with fixed 10 kHz

steps. These steps are selected such that each acquired waveform contains an integer

number of cycles within the 100 µs sampling window (10,000 points at 10 ns res-

olution), ensuring accurate frequency-domain representation and integration-based

calculations. This frequency range is aligned with the typical switching frequencies

of modern power electronic converters using ferrite cores.

However, as discussed in Sec. 2.3 and Appendix B, the accuracy of measurements

degrades under conditions of very low Bac or very high frequency. These data points

are either carefully filtered or excluded to maintain the integrity of the database.

Dc Bias Range Dc bias is swept using a linear ramp of Hdc from 0 to 60 A/m in

15 A/m steps, based on the excitation current injected through the auxiliary dc bias

circuit. For each level of dc bias, the maximum allowable Bac is adjusted downward

to avoid material saturation, using the maximum amplitude permeability curves pro-

vided in material datasheets. This ensures that the combined impact of dc and ac

excitation remains within the linear or weakly nonlinear regime of the core material,

thus avoiding irreversible magnetization or thermal damage.

Voltage Constraints and Excitation Window The excitation voltage applied to

the DUT is bounded by the ratings of the power amplifier and the T-type inverter. For

185



A. Detailed Implementation of Automated Data Acquisition System

sinusoidal excitations, the voltage sweep ranges from 1 V to 50 V; for triangular and

trapezoidal PWM excitations, the sweep extends from 5V to 80V. These limitations

define an upper bound for the Bac·f product of the measured waveforms and constrain

the achievable combinations of flux density and frequency, particularly under extreme

duty cycles or high-frequency operation.

Thermal Constraints and Data Pruning To prevent excessive temperature rise

in the core during high-loss measurements, points with estimated losses exceeding

5,000 kW/m3 (estimated using iGSE) are excluded. Such high losses would not only

affect thermal equilibrium but also compromise measurement accuracy and poten-

tially damage the DUT. Conversely, extremely low-loss points below 1 kW/m3 are

also skipped to avoid unnecessary measurement overhead and focus data collection

within the range of practical interest for design and modeling applications.

Temperature Range The temperature range for characterization is set from 25◦C

(room temperature) to 90◦C, covering the most relevant conditions encountered in

real-world power electronics applications. This range is determined by the capabilities

of the thermal control system described earlier. While the system can accommodate

controlled submersion heating, extending the range above 100◦C would require the

use of advanced thermal environments such as temperature-controlled ovens, which

are considered outside the scope of this study.
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Appendix B

Data Quality Control of Large-Scale

Measurement

Here we introduce more details about the measures to control the data quality in the

following aspects:

B.1 Equipment Evaluation and Calibration

The accuracy of the large-scale data acquisition system heavily depends on the careful

evaluation and calibration of the equipment used. To ensure high data quality, the

experimental setup, including all measurement instruments, has been designed and

implemented following the guidelines outlined in [24,28,29]. Special attention is paid

to understanding and mitigating the limitations of each piece of equipment, as these

limitations directly affect the measurement precision and, consequently, the overall

quality of the data.

One of the key components in the system is the oscilloscope (Tektronix DPO4054),

which is responsible for capturing the voltage and current waveforms during the mea-

surements. To evaluate its performance, the oscilloscope was calibrated against an

Agilent 34401A 61
2
-digit multimeter, measuring both dc and ac voltage signals under

the same conditions. The relative errors for dc and ac measurements were calculated
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by averaging measurements taken over the full measurement range (0 V to 80 V and

50 kHz to 500 kHz). The relative error for the mean dc voltage was found to be 0.25%,

and for the RMS ac voltage, it was 0.67%. These results confirm the oscilloscope’s

accuracy in measuring VDC , IDC , vAC , and iAC , which are critical to the core loss cal-

culation in Eq. (2.5). According to the oscilloscope’s specifications, the gain accuracy

is rated at ±1.5%, which directly affects the measurement of the gain factors GV and

GI . In addition, prior to each measurement iteration, the oscilloscope’s signal path

is reset and re-calibrated, which eliminates any undesired zero-drift offsets (V0 and

I0) and ensures that any time skew between voltage and current measurements (θ) is

minimized.

The current measurement is performed using a wide-band coaxial shunt (T&MW-

5-10-1STUD), which is known for its low parasitic inductance and stable performance

under varying temperatures. The coaxial shunt is connected to the DUT and the

circuit board through a BNC connector, which has a parasitic terminal capacitance

of less than 10 pF. Additionally, efforts are made to minimize parasitic capacitances

on the circuit board to ensure the accuracy of the current measurement. The low

parasitic inductance and minimized capacitance significantly reduce errors in IDC

and iAC , particularly mitigating time skew (θ), which is essential for precise core loss

calculations.

To further ensure high data accuracy, all equipment calibration and measurement

processes are fully automated, reducing the possibility of human error during the setup

and acquisition phases. Automated calibration also contributes to the consistency of

measurements over time. Repeated measurements on the same DUT demonstrate

that the core loss values can be reproduced with a relative discrepancy of less than

3% between trials in the worst case, validating the reliability and consistency of the

acquired data.

188



B. Data Quality Control of Large-Scale Measurement

”

Figure B.1: Workflow of the virtual measurement simulation. The virtual measure-
ment setup numerically simulates the impact of various sources of measurement error.
The virtually measured waveform is compared against the ideal waveform to estimate
the measurement accuracy.

This rigorous calibration process, combined with the automated equipment setup,

guarantees high measurement precision and consistency, essential for building a reli-

able large-scale dataset for power magnetics research.

B.2 Model-driven Method for Quantifying the Error

The accuracy of data-driven models is directly tied to the quality of the underlying

data. To assess the potential error in the measured results and estimate the distribu-

tion of such errors, we adopt a model-driven approach that combines physics-based

simulations with virtual measurements. This method helps quantify the impact of

various measurement errors, and by leveraging Monte Carlo experiments, it allows for

an in-depth analysis of the uncertainty associated with the measurements. This error

analysis provides a benchmark for setting accuracy targets when employing machine

learning models or curve-fitting techniques.

Figure B.1 illustrates the workflow of the virtual measurement simulation. In this

approach, a reference waveform is generated based on the material model and passed

into the virtual measurement setup. The setup then incorporates various sources
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of error, such as system parasitics, signal distortion, and calibration uncertainties.

By simulating the effects of these errors, the setup generates a virtually measured

waveform, which is then compared to the ideal waveform. This comparison allows for

the evaluation and estimation of measurement uncertainty.

The parameters in the virtual measurement setup are determined either from

datasheets of equipment, components, and materials, or estimated based on real

experimental results. The key sources of measurement error that are considered in

this setup include:

� Systematic error: This includes parasitic effects from the power stage circuit,

cables, and the DUT itself. Other factors, such as timing skew between pas-

sive probes (±1.6 ns), uncertainties in probe gains (±1.5%), and probe offsets

(±0.5%), also contribute to systematic errors. Additionally, manufacturing tol-

erances in the core geometry (e.g., assuming area and length with a variation

of ±2.5%, typically) affect the accuracy of calculating the magnetic field B(t)

and field strength H(t).

� Statistical error: Statistical errors arise from environmental factors such as

electrical noise, quantization errors, and sampling noise introduced by the os-

cilloscope. Temperature variations in the DUT, which can lead to a deviation

of ±1.6% in power loss (PV ), also contribute to the overall statistical error.

By modeling these sources of error, we can quantify the uncertainty in the data

collection process and establish confidence intervals for the measured values. This

model-driven approach allows for a more accurate and systematic understanding of

the sources of error, providing valuable insights into the overall accuracy of the mea-

surement system and guiding the improvement of data collection methods. Addition-

ally, the insights gained from this method can inform the calibration and optimization

of the data-driven models, ensuring that the results are both reliable and precise.
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Figure B.2: Example simulation results for TDK N87 material with the virtual mea-
surement setup and Monte Carlo experiments, where the measurement uncertainties
introduced by the probe and scope are taken into consideration. Colors depict the
discrepancy between the virtually measured core loss and the expected core loss.

Using the virtual measurement setup, a series of Monte Carlo simulations were

performed to quantify the measurement uncertainty and error distribution. The un-

certain variables in the system, including parasitic components, oscilloscope limita-

tions, and temperature variations, were assumed to follow either Gaussian or uniform

distributions, with the respective 2σ deviations. Figure B.2 shows the simulation

results for the TDK N87 material, where the impact of measurement uncertainties

introduced by the oscilloscope probes and scope settings is included.

In the simulation, the discrepancy between the virtually measured core loss and

the expected core loss is evaluated. The values displayed in Figure B.2 correspond

to the 95th percentile of the Monte Carlo distribution, which represents the upper

bound of the measured error across various trials. As the figure demonstrates, most

of the sample points in the measured range show relatively low error rates, with errors

less than 6%. However, the highest error levels are found in the regions with high
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Figure B.3: Error distribution of an example point (300 kHz, 50 mT, 50% duty ratio
triangular wave with zero dc bias measured at 25◦C), where the measurement uncer-
tainties introduced by the circuit parasitics, scope and probe, temperature variation,
and geometry variations are considered. Both the systematic error and the statistical
error are less than 4% for the majority of trials in the Monte Carlo experiments. The
spread of systematic error is larger than that of statistical error.

frequency and low flux density. In these regions, the measurements are more suscep-

tible to electrical noise and the inherent inaccuracies of the measurement equipment,

as expected.

Further refinement of the error analysis is presented in Figure B.3, which shows

the error distribution for a specific measurement point – 300 kHz, 50 mT flux density,

50% duty cycle triangular waveform, and zero dc bias, measured at 25◦C. The uncer-

tainties introduced by circuit parasitics, oscilloscope probe inaccuracies, temperature

variations, and core geometry fluctuations are taken into account in the Monte Carlo

simulation. The results show that for the majority of trials (95%), both the sys-

tematic error and the statistical error remain within 4%. Specifically, the systematic

error is generally less than 3.6%, while the statistical error is below 2.3%. These

results indicate that systematic errors have a more significant impact on the overall

measurement accuracy than statistical errors.

192



B. Data Quality Control of Large-Scale Measurement

Geometry variation, especially in the core material, contributes significantly to

systematic error. Although geometry fluctuations are inherent to material production

and cannot be avoided in the design phase, equipment upgrades and reducing parasitic

effects (such as minimizing time skewing between voltage and current signals) can help

to improve measurement accuracy marginally. Additionally, temperature variations

contribute substantially to statistical error, underlining the importance of precise

temperature control during measurements.

Overall, the high measurement accuracy is maintained within the typical operating

range of the data acquisition system. However, measurements for materials with a

high quality factor, particularly at high frequencies or low flux densities, are more

prone to error. By combining model-driven error analysis with material datasheet

specifications, we can confidently determine a reliable measurement range where the

data quality remains high, as indicated in Figure A.3 in Appendix A. This error map

can be similarly generated for each material in the database to assess the quality of

the collected data.

B.3 Data-driven Methods for Data Quality Control

In large-scale automated data collection, outliers are inevitable due to rare anomalous

operations. To address this, an algorithm was developed to detect and remove outlier

data points based on smoothness analysis. As illustrated in Fig. B.4, for each data

point in the dataset, the estimated power losses are calculated using the Steinmetz

parameters inferred from the neighboring data points, which are close in terms of

frequency and flux density. The other variables are kept constant for these points.

If the measured losses of a given data point significantly deviate from the estimated

value, it can be flagged as an outlier.

More specifically, for a given data point, a weight reflecting the closeness to other

data points is assigned. This weight is defined as:
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wi = max {1−
√

(log fi − log f0)2 + (logBi − logB0)2

wmax

, 0} (B.1)

Here, (f0, B0) are the frequency and flux density of the considered data point,

while (fi, Bi) refer to the values of each other data point in the dataset. The square

root term quantifies the distance between two data points on the logarithmic f–B

plane. The parameter wmax can be tuned to determine the size of the neighboring area

under consideration. Based on this weight definition, the closer (fi, Bi) are to (f0, B0),

the closer wi is to 1. Conversely, any (fi, Bi) that are farther from (f0, B0) will have

a smaller wi value, eventually reaching 0 if the distance exceeds wmax. Fig. B.4 shows

an example distribution of the weights for a considered data point, with the color of

the points reflecting the normalized distance between any given data point and the

considered data point.

Based on the weight wi, a weighted least square regression is performed to calculate

the local Steinmetz parameters:

min
k,α,β

∑
i̸=0

[
(kfα

i B
β
i )

2 − P 2
meas,i

]
w2

i (B.2)

The local Steinmetz parameters for a given data point are computed using the

nearby data points, allowing the expected core loss value to be estimated according to

the Steinmetz equation. The outlier factor is then defined as the relative discrepancy

between the expected loss and the measured loss:

Outlier Factor =
kfαBβ − Pmeas

Pmeas

× 100 (B.3)

Figure B.5 illustrates an example of the discrepancies between the expected core

loss, based on the local Steinmetz parameters of nearby points, and the measured

losses for different data points. A data point with a high outlier factor is considered

a low-quality measurement and is subsequently removed from the dataset.
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Figure B.4: Example distribution of the defined weight of closeness for a specific
considered data point. The local Steinmetz will be performed within the local range
that is close enough to the considered data point.

Figure B.5: Example of outlier data points in a dataset for the material N87 under
sinusoidal excitation. For each point, data up to 0.1 decades far in terms of flux
density and frequency are used to generate the local Steinmetz parameters. The data
points discarded because the error compared to the estimation is above ±4% are
marked as solid stars.

Outlier detection is crucial for maintaining high data quality. This outlier detec-

tion algorithm is one approach for evaluating data quality and removing abnormal

data. While it has several strengths, it also has limitations, such as its inability to

detect systematic errors and the potential to miss unusual material characteristics

that do not fit typical patterns.
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Appendix C

MagNet Challenge for Data-Driven Power

Magnetics Modeling

Here we provide an introduction on the IEEE MagNet Challenge 2023. More details

about this competition can be found in [48].

C.1 Background and Motivation

Magnetic components play a pivotal role in power electronics, often contributing over

30% to both total cost and system losses. As modern applications increasingly de-

mand higher efficiency, density, and dynamic performance, magnetics have emerged

as a critical bottleneck. The design and analysis of these components are compli-

cated by their nonlinear behavior, geometry-dependent properties, and sensitivity

to dc bias, temperature, and frequency. These influences result in highly complex

performance characteristics that are difficult to capture using traditional modeling

techniques, which often rely on empirical equations, lookup tables, or simplified loss

maps. While circuit-level simulation tools and numerical field solvers have seen signif-

icant advancement, the modeling of magnetic materials themselves – especially under

real operating conditions – has progressed much more slowly.
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One of the most widely adopted methods for core loss modeling is the Steinmetz

equation (SE), originally proposed in the 1890s. While the SE and its numerous

variants (e.g., iGSE, i2GSE) have been extended to handle arbitrary waveforms, they

are inherently limited by their low parameter count and empirical nature. These

models lack the ability to generalize across operating conditions or account for com-

plex dependencies such as thermal variation and dc bias. Despite being ubiquitous in

practice, even the most advanced Steinmetz-based models struggle to offer sufficient

accuracy for modern high-performance magnetic design.

Beyond core loss estimation, another essential task in magnetic modeling is cap-

turing the B–H hysteresis loop, which serves as a fingerprint of material behavior

and is key to analyzing effects like saturation, inductance variation, and coupling.

Traditional frameworks – such as the Preisach [79] and Jiles-Atherton [10] models –

are built upon semi-empirical formulations and face similar limitations in scalability

and accuracy. As modern power magnetics are increasingly shaped by data complex-

ity and nonlinearity, there is a compelling opportunity to leverage machine learning

techniques, particularly neural networks, to upgrade both core loss and B–H mod-

eling approaches [80, 81]. Doing so would enable a unified, data-driven framework

capable of capturing the full range of nonlinear, frequency-dependent, and thermal

effects in power magnetics, while maintaining compatibility with modern simulation

workflows.

Inspired by the success of the ImageNet Challenge in the computer vision do-

main [82], the MagNet Challenge was conceived to establish a collaborative, open-

source platform for advancing magnetic component modeling in power electronics.

Its primary objective was to transcend the limitations of the traditional Steinmetz

equation-based framework by leveraging a large-scale, high-fidelity dataset that spans

a wide array of magnetic materials, excitation waveforms, frequencies, and temper-

atures. As shown in Fig. C.1, the challenge aimed to catalyze the development of
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Figure C.1: The vision and mission of the MagNet Challenge in 2023. The open-
source initiative aims at developing less complex, more versatile, and more accurate
data-driven power magnetics models.

new modeling paradigms that are not only more accurate but also significantly more

compact, versatile, and scalable.

At its core, the MagNet Challenge sought to identify and promote data-driven

techniques that are efficient in computation, memory, and training data requirements,

while offering robust generalization across diverse material behaviors. In designing

the challenge framework, we formulated a set of fundamental questions to guide the

community’s exploration of next-generation modeling approaches:

� Should we adopt a unified modeling architecture (e.g., a generalized Steinmetz-

based framework), or allow for multiple specialized models tailored to different

materials and applications?
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� What level of accuracy is practically sufficient, given the inherent variations in

material batches, core geometry, temperature fluctuations, and manufacturing

inconsistencies? Can we distinguish modeling error from measurement noise?

� What is the minimal parameter set needed to describe a magnetic material

across its full operational envelope without sacrificing predictive capability?

� Which modeling paradigm is best suited for various use cases – such as core loss

estimation, B–H loop prediction, analytical design, SPICE-level simulation, or

finite element integration?

� How can we visualize model behaviors and data distributions to enhance inter-

pretability and deepen our physical insight into magnetic phenomena?

� What is the optimal data requirement and sampling strategy for training models

that remain accurate and efficient across a wide operation space?

To investigate these challenges systematically, the competition was organized into

three complementary tracks:

� Model Performance Track: Focused on building predictive models that gener-

alize well across both known and unseen materials, utilizing large datasets to

extract meaningful patterns.

� Concept Novelty Track: Encouraged the introduction of new theoretical frame-

works, modeling philosophies, and signal processing techniques that could re-

frame our understanding of magnetic behavior.

� Software Engineering Track: Aimed at creating practical tools with clean,

modular code, user-friendly interfaces, and open-source readiness to support

widespread adoption and community growth.
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Through these tracks, the MagNet Challenge established a benchmark platform

to not only evaluate model performance but also promote innovation, reproducibility,

and deeper engagement with the fundamental science of power magnetic materials.

Specifically, MagNet Challenge 2023 concentrated on the problem of modeling

core losses under periodic steady-state excitation. Participants were provided with

measured B–H loop data as training input, and were tasked with developing models

capable of accurately predicting core losses across a wide range of materials and

operating conditions. While the scope of the 2023 challenge was intentionally focused

to enable direct comparisons of modeling techniques, future iterations may expand to

encompass additional tasks such as transient magnetic behavior modeling or direct

B–H loop prediction.

Rather than simply benchmarking existing literature, the MagNet Challenge was

conceived as a forward-looking, open-access research platform aimed at critically eval-

uating both established and emerging modeling approaches under standardized con-

ditions. The competition format provided a unique opportunity to assess model

accuracy, generalization, efficiency, and usability in a transparent and reproducible

manner. The full challenge timeline is illustrated in Fig. C.2. The event attracted

contributions from more than 220 researchers worldwide, including academic and

industry participants, who engaged as developers, reviewers, judges, and organizers.

To promote openness and foster future collaboration, all submitted reports, source

code, and models were released publicly [48]. This ensured that the intellectual

contributions of each team were disclosed in full, enabling reproducibility, peer review,

and potential re-use within the broader research community. The MagNet Challenge

thereby served not only as a benchmarking campaign, but also as a catalyst for

community building and open scientific advancement in the domain of data-driven

power magnetics modeling.
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Figure C.2: The 1-year timeline of the MagNet Challenge in 2023, spanning from
February 2023 to February 2024.

The contributions of MagNet Challenge include both advancing the technology

and fostering a more collaborative research community in power electronics by:

1. Advancing the state-of-the-art: Through collaborative and competitive

multi-objective optimization, the challenge has pushed the boundaries of what

is possible in power magnetics modeling.

2. Developing guidelines for data-driven research: The challenge has estab-

lished practical rules and useful guidelines for conducting data-driven research

in power electronics.

3. Fostering an open-source research community: It has set examples for

creating a transparent, open-source international research community, promot-

ing collaboration on key topics.
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4. Exploring future research directions: By providing a fair performance

benchmark, it offers new insights that can guide future research in power mag-

netics modeling towards the most promising approaches.

C.2 Goals, Task Setup, and Evaluation Criteria

The goal of the MagNet Challenge in 2023 is to develop intelligent software tools

that can learn and predict core loss information with efficient data usage, based on

the MagNet database as demonstrated in Chapter 2. For each magnetic material of

interest, student teams were asked to develop a MATLAB or Python function that

takes the following three inputs for modeling power magnetic materials in steady

state:

� A single-cycle arbitrary flux density waveform in 1024 steps: B(t) (unit: T).

� An operation frequency: fsw (unit: Hz).

� A temperature: T (unit: degrees C).

and produce the following output:

� An average volumetric core loss estimation (floating point): Pv (unit: W/m3).

The training data includes the B-H loop time sequences, frequency fsw, and

temperature T . The final outcome of the model is a callable function:

Pv = f(B(t), fsw, T ). (C.1)

Although measurement data with dc bias conditions was made available through

the MagNet database, such effects were not formally included in the 2023 MagNet

Challenge evaluation. This exclusion was primarily due to limitations in the availabil-

ity of high-quality, bias-dependent data and the lack of a rigorous understanding of
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measurement accuracy under these conditions. Similarly, the impact of magnetic core

geometry on loss characteristics – while known to be significant – was also omitted

from the official evaluation framework due to comparable challenges in data consis-

tency and interpretability. Nevertheless, teams were encouraged to explore the use of

dc bias data as an optional enhancement to their modeling approaches. Incorporat-

ing such factors is expected to be a key direction for future iterations of the MagNet

Challenge, as improved datasets and more refined measurement methodologies be-

come available.

The challenge included two rounds of competitions: a pre-test round which allowed

the teams to get familiar with the data and the competition rules, and a final-test

round which determined the teams’ final ranking. Each training data point is offered

as a pair of single-cycle B(t) and H(t) time sequences, with 1024 steps at differ-

ent frequencies fsw and temperatures T . The area of the B–H loop determines the

volumetric core loss Pv. Note that different numerical integration algorithms for cal-

culating the B–H loop areas may result in very different core loss estimation results,

especially if the B–H curve is not smooth (e.g., due to non-sinusoidal excitation or

nonlinear material behavior). The testing data points include B(t), fsw, and T , but

do not include H(t) or Pv. The datasets used for the pre-test phase and the final-test

phase were:

� Round #1 Training: A large amount of training data for 10 materials dedicated

for training: {3C90, 3C94, 3E6, 3F4, 77, 78, N27, N30, N49, N87}.

� Round #1 Testing: Separate, randomly sampled testing data for the same 10

materials: {3C90, 3C94, 3E6, 3F4, 77, 78, N27, N30, N49, N87}.

� Round #2 Training: Strategically sampled training data for 5 materials:

{3C92, T37, 3C95, 79, ML95S}.
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� Round #2 Testing: The remaining data for the same 5 materials used in Round

#2 training: {3C92, T37, 3C95, 79, ML95S}.

Particularly, to ensure fairness during the second round of the MagNet Challenge,

the identities of the magnetic materials used were kept confidential. Their datasets

were strategically sampled to evaluate model performance under a variety of scenarios.

Each material was designed to represent a different type of modeling challenge:

� Material A (3C92): Tiny Data Challenge This material exhibits charac-

teristics similar to those of the 10 materials provided in the first-round training

set. It was used to assess model generalization under data-scarce conditions,

where only a limited amount of training data was provided, while the majority

of the dataset was reserved for testing.

� Material B (T37): New Material Challenge As a broadband material

significantly different from the first-round materials, T37 was introduced to

test the ability of models to adapt to unfamiliar material properties. In this

case, a large training set was provided, but only a small test set was released.

� Material C (3C95): Temperature Challenge This material was selected to

evaluate the temperature dependence of core loss models. The test dataset in-

cluded temperature ranges not covered in the training data, enabling assessment

of a model’s ability to interpolate or extrapolate across thermal variations.

� Material D (79): Waveform Challenge This material was used to examine

the model’s sensitivity to excitation waveform shape. The training set included

only limited data points with trapezoidal waveforms, whereas the test set was

enriched with a diverse set of trapezoidal excitation conditions.

� Material E (ML95S): Frequency and Flux Density Challenge This ma-

terial was used to test a model’s capability to capture frequency and flux density
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dependencies. The training set included sparse data over a narrow operating

range, while the testing set featured a wide range of unseen frequency and flux

density conditions.

Through these five targeted tracks, the round #2 evaluation aimed to systemat-

ically challenge model robustness, generalization, and versatility under realistic and

diverse operating conditions.

MagNet Challenge 2023 primarily focused on the task of predicting magnetic core

losses under periodic steady-state excitation. To evaluate prediction accuracy, the

relative error ϵ between predicted and measured volumetric core loss was defined as:

ϵ =
|Pv,meas − Pv,pred|

Pv,meas

× 100 (C.2)

Here, Pv,meas denotes the measured volumetric core loss, while Pv,pred represents the

corresponding predicted value. The 95th percentile error was selected as the primary

metric for ranking the prediction accuracy of submitted models. Based on prior eval-

uations of sample-to-sample variability in magnetic components [83], a 95th percentile

error below 10% was considered a competitive benchmark for core loss prediction. It

is worth noting that the normalization in (C.2) may lead to biases – particularly for

samples with extremely low absolute losses – since the prediction error (numerator)

does not necessarily scale linearly with the loss magnitude (denominator). Therefore,

extreme low-loss or high-loss operating points may have limited practical relevance

in typical power magnetic design. This observation suggests that alternative perfor-

mance metrics may be explored in future iterations of the challenge.

In addition to accuracy, model compactness was also evaluated. Model size was

defined as the total number of stored parameters required to describe each material.

This metric excluded algorithmic complexity – such as the number of computational

layers, iteration structures, or model depth – and instead focused solely on memory
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requirements. This design choice aimed to incentivize the development of models

that are parameter-efficient and computationally scalable, aligning with real-world

constraints in embedded and hardware-constrained applications.

C.3 Final Evaluation Results

In April 2023, the MagNet Challenge officially launched with the registration of 39

teams from 17 countries. By the end of the competition, 24 teams from these countries

successfully submitted their final results, marking a strong international engagement.

The MagNet Challenge provided a platform for teams to investigate a broad spec-

trum of modeling approaches, encompassing both equation-based and data-driven

techniques for characterizing power magnetic materials. Through this open bench-

marking effort, the results quantitatively revealed a fundamental trade-off between

model compactness and prediction accuracy, offering new insights into the complexity-

accuracy balance in magnetics modeling.

While the majority of participating teams adopted modern machine learning

strategies – including neural networks and other advanced data-driven algorithms

– a smaller number of teams pursued physics-informed or traditional equation-based

frameworks. The strategic structure of the MagNet dataset enabled a fair and sys-

tematic comparison of these diverse approaches. This in turn contributed to a deeper

understanding of the advantages and limitations inherent to each modeling strategy

under real-world constraints such as waveform diversity, data sparsity, and operating

condition variation.

Designing a high-performing, data-driven power magnetics model involves multi-

objective optimization, balancing accuracy, compactness, and generalization. By

aggregating the final submissions, the competition effectively constructed a Pareto

frontier representing the current state-of-the-art. This collective outcome offers both
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Figure C.3: Average 95th percentile error across the 5 materials, and average model
number of parameters (size) of the 24 final submissions, together with the state-of-
the-art (SOTA) Pareto fronts before and after the MagNet Challenge, estimated using
the results reported in [80] as a benchmark. The minimum average 95th percentile
error reaches 7%, and the smallest model parameter size reaches 60. Both the model
sizes and average errors are greatly reduced as a result of the community effort in the
MagNet Challenge.

a quantitative benchmark and a qualitative perspective for future research directions

in power magnetics modeling.

Figure C.3 presents the average 95th percentile error versus model size for all final

submissions. Notably, the top-performing models achieved less than 10% average 95th

percentile error while using approximately 1,000 parameters, highlighting impressive

advances in model efficiency and precision.

Thanks to the concerted efforts of all participating teams, significant improve-

ments have been achieved in both the accuracy and compactness of magnetic core

loss models. Detailed documentation of the complete list of participating teams, in-
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dividual models and technical approaches adopted by each team, and final evaluation

results can be found in [48].

C.4 Conclusion and Future Roadmap

The ultimate objective of the MagNet Challenge is to establish a comprehensive

framework for modeling power magnetic components by evaluating and advancing a

wide spectrum of modeling strategies, with the long-term goal of enabling the opti-

mization and automation of magnetic component design. Drawing from the insights

gained through the 2023 competition, we envision the next-generation MagNet models

to possess the following key characteristics:

� Accuracy: Models should achieve high fidelity in predicting magnetic behav-

ior, matching the precision of experimental data and accounting for sample-to-

sample variation. They must also reflect the inherently multi-scale and multi-

physics nonlinear nature of magnetic phenomena, to be applicable across the

entire design, development, and manufacturing process.

� Compactness: To support efficient training, fast simulation, and effective op-

timization, models should remain lightweight in size. Given the large design

space (e.g., materials, geometries) and operating space (e.g., frequency, wave-

form, temperature), compact models with minimal parameters are critical, es-

pecially when measurement data is limited.

� Generality, Consistency, and Versatility: Models should be broadly ap-

plicable across various applications, consistent with other electronic component

models (e.g., for semiconductors and capacitors), and flexible enough to ac-

commodate diverse design objectives – such as prioritizing either accuracy or

simplicity.
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The 2023 MagNet Challenge revealed that both equation-based and data-driven

approaches offer distinct strengths and weaknesses. There remains substantial room

for improvement in both camps, as well as opportunities to combine them into hybrid

methods capable of addressing more sophisticated design needs. As illustrated in

Fig. C.4, the future roadmap of the MagNet Challenge aligns with the aforementioned

objectives, with a particular emphasis on expanding model generality.

For instance, the 2023 Challenge focused on major-loop steady-state excitation

with zero DC bias, within a limited frequency range (tens to hundreds of kHz) and

sparse temperature conditions. Future challenges are expected to cover more com-

plex excitation conditions, such as transient waveforms, minor loops, and non-zero

DC bias, as well as wider frequency bands, geometry dependence, and mixed-mode

operation (e.g., magnetics used in ac-dc switched-mode converters).

While the top-performing models in 2023 demonstrated strong results under

the specific evaluation settings, they may not generalize well to unseen conditions

or broader application scenarios. Continued progress will require new modeling
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paradigms and deeper understanding. In this context, several promising research

directions for future MagNet Challenges include:

� Data Engineering: Future challenges should move toward community-driven,

open-source data acquisition frameworks, with standardized measurement pro-

tocols and cross-validation among institutions and manufacturers. As the fi-

delity of a model is ultimately bounded by the quality of the input data, a

transparent and sustainable data infrastructure will be vital.

� Model Framework: In 2023, teams explored a range of modeling paradigms

including black-box (data-driven), white-box (equation-based), and gray-box

(hybrid) approaches. Most relied on time-domain modeling, while frequency-

domain approaches remain underexplored and warrant further attention. Future

frameworks should support scalable, updatable architectures that can accom-

modate multiple materials under a unified representation, and possibly interface

with large language models to enhance adaptability and accessibility.

� Data Visualization: The high-dimensional nature of magnetic material data

necessitates robust visualization tools for filtering, compressing, and interpret-

ing results. Enhancing the human–data interface will be crucial to unlocking

new insights and applications.

� Physical Insights and Better Materials: While the primary focus of the

2023 Challenge was not on improving physical theories, several teams attempted

to close the loop between data-driven modeling and material physics. With bet-

ter datasets, more expressive models, and improved visualization, the MagNet

Challenge holds the potential to deepen physical understanding and guide the

design of novel magnetic materials and components.

In summary, the MagNet Challenge sets a precedent for community-driven ad-

vancement in power magnetics modeling. By fostering collaboration and benchmark-
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ing progress across disciplines, it is poised to drive both technological innovation and

scientific discovery in the years to come.
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