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Magnetics as the main performance/size limiter …
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• Magnetics design is interesting (inductors, 
transformers, coupled inductors, EMI filters, etc.)

• Magnetics design is complicated (material, 
geometry, winding, loss, thermal, etc.)

• Magnetics design is imprecise (core loss, saturation, 
B-H loop, temperature) -> sub-optimal

• Source: Princeton University, Texas Instruments



Every mm3 of magnetics is cost and performance …
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• M. Chen and C. R. Sullivan, “Unified Models for Coupled Inductors 
Applied to Multiphase PWM Converters,” in IEEE Transactions on 
Power Electronics, vol. 36, no. 12, pp. 14155-14174, Dec. 2021.

Vertical Power Delivery and Vertical Magnetics



Other emerging applications need precision …
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Robotics

High efficiency

Miniaturization

High reliability

Biomedical

Renewable Energy

Electric Vehicles

Wide temperature range

[WALL-E]

[Tesla]

Future Computing

[Tesla Dojo]

Vertical power delivery

More Electric Aircraft

Light weight



High frequency power magnetics

6

Option #1: Increasing the switching frequency
• Reduce the energy buffering requirement, reduce the Bmax
• Better materials, better circuits, and better structural design

• A. J. Hanson, J. A. Belk, S. Lim, C. R. Sullivan and D. J. Perreault, 
“Measurements and Performance Factor Comparisons of 
Magnetic Materials at High Frequency,” in TPEL’16.

• R. S. Yang, A. J. Hanson, C. R. Sullivan and D. J. Perreault, 
“Design Flexibility of a Modular Low-Loss High-Frequency 
Inductor Structure,” in TPEL’21.

High Q inductors in the 
5 MHz-10 MHz range



High precision power magnetics
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Option #2: Optimizing flux and current distribution
• Better magnetic flux …
• Better current distribution …

Flux & current for discrete assembly Flux & current co-optimization / co-design

Magnetic Rubik

Precision MagneticsApproximate Magnetics

9 x 9 x 3.4 mm



Better utilization of magnetic materials and conductors
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Deeper energy cycle Material + freq + waveform mix

Optimal current distribution

Precision of power magnetics design:
• Flux modeling & design (imprecise)
• Current distribution modeling & design (precise)
• Precise co-design of flux and current for complex structures (opportunities)

Optimal flux distribution

remove dc-bias



Optimizing flux and current distribution
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• Current wrap around Flux, or Flux wrap around Current

• C. R. Sullivan and M. Chen, “Coupled Inductors for Fast-Response High-Density Power Delivery: Discrete 
and Integrated,” 2021 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX, USA, 2021, pp. 1-8.

Prof. Charles Sullivan
Dartmouth College

Twisted 
Core

Twisted 
Winding



Circuit techniques for optimizing magnetics utilization
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Deep cycling of magnetics Share magnetics for different purposes

10A

11A

Inductive Energy Utilization Ratio (1
2
𝐿𝐿𝐼𝐼2)

9A
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inductors transformers

Energy Storage

Energy Utilization



Series coupling, parallel coupling, and matrix coupling …
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• M. Chen and C. R. Sullivan, “Unified Models for Coupled Inductors 
Applied to Multiphase PWM Converters,” in IEEE Transactions on 
Power Electronics, vol. 36, no. 12, pp. 14155-14174, Dec. 2021.

…
more

KCL: 𝑁𝑁1𝑖𝑖1 + 𝑁𝑁2𝑖𝑖2 + ⋯+ 𝑁𝑁𝑀𝑀𝑖𝑖𝑀𝑀 = 0
KVL: 𝑣𝑣1

𝑁𝑁1
= 𝑣𝑣2

𝑁𝑁2
= ⋯ = 𝑣𝑣𝑀𝑀

𝑁𝑁𝑀𝑀

KVL: 𝑁𝑁1𝑖𝑖1 = 𝑁𝑁2𝑖𝑖2 = ⋯ = 𝑁𝑁𝑀𝑀𝑖𝑖𝑀𝑀
KCL: 𝑣𝑣1

𝑁𝑁1
+ 𝑣𝑣2

𝑁𝑁2
+ ⋯+ 𝑣𝑣𝑀𝑀

𝑁𝑁𝑀𝑀
= 0

Series Coupled
Voltage Equalizing Xformer

Parallel Coupled
Current Equalizing Xformer

Series Coupled Parallel Coupled

Matrix Coupled



All-in-One Magnetics for higher order PWM converters
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Multiphase SEPIC Multiphase Ćuk

Multiphase Tapped-Inductor Buck Multiphase Flyback

W11

W1N

W31

W3N

WM1

WMN

W21

W2N

• P. Wang, D. H. Zhou, Y. Elasser, J. Baek and M. Chen, “Matrix Coupled All-in-One Magnetics for PWM Power 
Conversion,” in IEEE Transactions on Power Electronics, vol. 37, no. 12, pp. 15035-15050, Dec. 2022.

Dr. Ping Wang
Princeton PhD’23



The benefits of parallel coupling come from interleaving …
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 Interleaving Benefit (Γ)

𝛤𝛤 =
𝑘𝑘 + 1 − 𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 − 𝑘𝑘

1 − 𝐷𝐷 𝐷𝐷𝑀𝑀2 𝛾𝛾 =
1 + 𝛽𝛽𝛽𝛽
1 + 𝛽𝛽

𝛽𝛽 =
𝑀𝑀ℝ𝐶𝐶

ℝ𝐿𝐿

 Coupling Coefficient (𝛽𝛽)  Coupling Benefit (𝛾𝛾)

Uncoupled, Same Phase Ripple

Benefits at input/output
Benefits within each phase Quantify the benefits of coupling

• M. Chen and C. R. Sullivan, “Unified Models for Coupled Inductors Applied to Multiphase PWM Converters,” TPEL’21.

about 10x ripple reduction

𝜸𝜸 �
𝜷𝜷→∞

= 𝚪𝚪

𝜸𝜸 �
𝜷𝜷→𝟎𝟎

= 𝟏𝟏uncoupled

fully coupled



Unified models for multiphase coupled magnetics
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• M. Chen and C. R. Sullivan, “Unified Models for Coupled 
Inductors Applied to Multiphase PWM Converters,” TPEL’21.

Differential Path
(Small Ripple)

Common Path
(Fast Transient)

Gyrator-Capacitor Model

Inductance Dual Model



Trans-Inductor Voltage Regulator (TLVR)
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• M. Chen and C. R. Sullivan, “Unified Models for Coupled 
Inductors Applied to Multiphase PWM Converters,” TPEL’21.

• S. Jiang, X. Li, M. Yazdani, and C. Chung. “Driving 48V 
Technology Innovations Forward – Hybrid Converters and 
Trans-Inductor Voltage Regulator (TLVR),” APEC’20.

• M. Schurmann and M. Ahmed (Texas Instruments) 
Introduction to the Trans-Inductor Voltage Regulator. 

TLVR and Coupled Inductors are Topological Duals

CoupLTLVR

Better Scalability Better Core/Winding Utilization

dual

optimal

sub-optimal but highly scalable

Image source: TI & ADI



Lateral-flux twisted-core coupled inductors
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• Y. Dong, J. Zhou, F. C. Lee, M. Xu and S. Wang, “Twisted 
Core Coupled Inductors for Microprocessor Voltage 
Regulators,” TPEL’08. 

• A. M. Naradhipa, F. Zhu and Q. Li, “Ultra-Low-Profile 
Twisted Core Inductor for Vertical Power Delivery Voltage 
Regulator,” APEC’24. 

• J. Baek, Y. Elasser and M. Chen, “MIPS: Multiphase 
Integrated Planar Symmetric Coupled Inductor for 
Ultrathin VRM,” TPEL’23.

• CPES Twisted Core Structure

• Princeton Magnetic Via Structure

Dr. Youssef Elasser
Princeton PhD’24

limited to 2-phases



Air-core: opportunities and challenges …
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• Y. Ding, X. Fang, R. Wu and J. K. O. Sin, “Fan-Out-
Package-Embedded Coupled Inductors …,” ISPSD, 
2020, doi: 10.1109/ISPSD46842.2020.9170128.

Series 
coupling

• Very low coupling coefficient
• Limited inductance density
• EMI concerns



Multiphase air-core coupled magnetics exist …
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• T. Sen, Y. Elasser and M. Chen, “Origami Inductor: Foldable 3-D Polyhedron Multiphase Air-
Coupled Inductors With Flux Cancellation and Faster Transient,” TPEL’24.

• Fully symmetric Platonic structures (a total of 5)
• Limited design flexibility, ~2x smaller ripple, ~2x faster

Tanuj Sen
Princeton PhD’26

4-Phase Air-Coupled Class-E 
Dc-Dc Converter @ 10 MHz

4 6 8

12 20
Plato



Planar integrated coupled inductor & TVLR designs

• Dartmouth/Tyndall, 2004

• Intel (Dibene et al, 2010)

• Columbia/IBM (Sturken, 2013)

• Galway (Duffy, 2019)
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• Pair-wise coupled “tunnel” design.

• Each core has net-zero dc current: avoid saturation 
even with high permeability magnetic materials.

• Inductance density still not high enough (limited 
by lateral winding & flux and wafer thickness)

Multi-layer stack



Vertical integrated magnetics design …
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• J. Baek et al., “Vertical Stacked LEGO-PoL CPU 
Voltage Regulator,” in IEEE Transactions on 
Power Electronics, vol. 37, no. 6, pp. 6305-
6322, June 2022. 

• B. Choi et al., “CoaxMIL 2.0 – Next Generation 
Coaxial Magnetic Integrated Inductors for 
Higher Efficiency Fully Integrated Voltage 
Regulator,” 2024 IEEE 74th Electronic 
Components and Technology Conference 
(ECTC), Denver, CO, USA, 2024, pp. 1044-1047.

Power-Via-Magnetics (Microfabricated and Discrete)

Dr. Jaeil Baek
Princeton Postdoc’21

Prof. Mark Allen
UPenn



Flux splitting transformers for high/fractional turns ratios
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• M. K. Ranjram, et al., “Variable-Inverter-Rectifier-Transformer: 
A Hybrid Electronic and Magnetic Structure Enabling 
Adjustable High Step-Down Conversion Ratios,” TPEL’18.

4Φ Φ

Φ

Φ

Φ
• A. Figueroa, P. Mazariegos, J. Goicoechea, A. Castro and J. A. Cobos, 

“Low-Profile Direct Power Converter: 350A/48V-1V with Planar Matrix 
Transformer using standard PCB and commercial cores,” APEC’24.



Series-coupled multi-winding magnetics
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• Y. Chen, P. Wang, Y. Elasser and M. Chen, “Multicell Reconfigurable Multi-Input Multi-Output Energy Router Architecture,” TPEL’20.
• P. Wang, Y. Chen, J. Yuan, R. C. N. Pilawa-Podgurski and M. Chen, “Differential Power Processing for Ultra-Efficient Data Storage,” TPEL’21.



From wire-windings to planar embedded windings … 
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• G. Li and X. Wu, “A high power density 48 V-12 V 
DCX with 3-D PCB winding transformer,” in APEC’20.

• J. A. Cobos, A. Castro, Ó. García-Lorenz, J. Cruz and 
Á. Cobos, “Direct Power Converter – DPx – for High 
Gain and High Current Applications,” APEC’22.

• Z. Li, F. Jin, X. Lou, Y. -H. H. Qiang Li and F. C. Lee, 
“Design and Optimization with Litz Wire Version of 
PCB in Solid-State Transformer,” APEC’24.

Vertical PCB Windings Single-Turn 3D Windings Planar Litz Windings



Hybrid multi-physics models for magnetics simulation …
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Non-linear 
core models

Linear winding 
models

SPICE 
simulations



Modeling material non-linearity with neural networks
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Automatic Data 
Acquisition MagNet Database Machine Learning 

Methods

Website 
Development

Data Quality 
Control

Equation-based 
Models

http://mag-net.princeton.edu 

Magnetics 
Simulation

MagNet Core Team Members:

Haoran Li Shukai Wang T. Guillod

Joseph 
Henry’s 
Magnet
in 1832 at
Princeton

Hyukjae Kwon

• M. Chen et al., “MagNet 
Challenge for Data-Driven 
Power Magnetics Modeling,” 
in IEEE Open Journal of 
Power Electronics, 2024.

http://mag-net.princeton.edu/
http://mag-net.princeton.edu/
http://mag-net.princeton.edu/


MagNet Challenge 1: Steady State Modeling
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Charles Steinmetz 
(1865-1923)

133 co-authors

New SOTA

24 teams

Many theses



MagNet Engine: a Platform by University of Sydney …
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https://magnet-engine-app.sydney.edu.au/ 

https://magnet-engine-app.sydney.edu.au/
https://magnet-engine-app.sydney.edu.au/
https://magnet-engine-app.sydney.edu.au/
https://magnet-engine-app.sydney.edu.au/
https://magnet-engine-app.sydney.edu.au/
https://magnet-engine-app.sydney.edu.au/


MagNet Challenge 2: from steady-state to transient
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• MagNet 2 Launch: Wed 2:00 PM, Omni Hotel, Room Grand A
• Oral Presentation: Wed 9:50 AM, GWCC Level Three, A301 



Non-linear hybrid models for power magnetics
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Balanced Unbalanced

Precise Model for Pinwheel Inductor

• Models for material hysteresis and losses
• Models for non-linear circuit behaviors of 

complex magnetic components

Flux distribution change with operating conditions

Material saturation influence circuit behaviors

Pixelized Magnetics Design and Simulation
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