

Validating quality and verification of core loss measurements for databases

Diego Serrano

Princeton University

Presented at APEC 2023, Industry Session 01, Tuesday 21st of March of 2023

MagNet database

V-I method for core loss measurement

Sources of error:

- Delay between voltage and current measurements
- Probes and oscilloscope error
- Parasitic elements in the circuit
- Non-ideal excitations
- Variation of temperature during testing Assessing reproducibility
 Variation of core parameters

The challenge of core losses

Area of B-H loop \propto loss

Automated V-I method, steady state Wide range of operating conditions:

- Flux density \rightarrow 10 mT to 300 mT
- Frequency \rightarrow 50 kHz to 500 kHz
- Wave shape \rightarrow Sinusoidal & PWMs
- Temperature \rightarrow 25 °C to 90 °C
- DC bias

MagNet database

Measurements formatted as database

- Formats: MAT, JSON, HDF5, CSV
- 10 magnetic materials
- 575.009 measurements
- Data available at <u>https://mag-net.princeton.edu/</u>

```
Value
                        Field 🔺
                        Date info
                                              '2022-07-14'
                        Place info
                                              Princeton Power Electron
                                             'Power stage: Prototype v
                                             'Signal generator: RIGOL
                                             'Configuration: DC currer
                                             'Oil Bath: Mineral Oil: Wa
                                             'Voltage Measurement: P
                                             'Oscilloscope: Tektronix I
                                             'Data discarded: Voltage
                                             'Frequency estimation ba
                                             'Saving a single cycle by
                                              'Flux estimated based on
                                              'R34.0X20.5X12.5'
                       Primary_Turns
                                             5
                        Secondary_Turns
                                             5
                       Dataset
                       - Voltage
                                              142871x1024 double
Measured
                        - Current
                                              142871x1024 double
    data
                        🛨 Sampling_Time
                                              142871x1 double
                       Temperature
                                              142871x1 double
                       Hdc
                                              142871x1 double
                       DutyP
                                              142871x1 double
Processed
                       🕂 DutyN
                                              142871x1 double
                       Frequency
                                             142871x1 double
     data
                        Flux
                                              142871x1 double
                       H Volumetric_Loss
                                              142871x1 double
                       🕂 B Field
                                              142871x1024 double
                        🕂 H Field
                                              142871x1024 double
```


Datapoints have uncertainty ranges, in all the variables considered

No ground truth

 Measurements can be compared to datasheets or other research data, but their accuracy is not always reported...

Sources of error:

Valid for any type of waveform

- Excitation applied to primary
- Current measured in primary
- Voltage measured in secondary
 Not affected by L_{lk}, R_w, R_{shunt}
 Only core variables measured

$$P_V = \frac{1}{V_e} \frac{1}{T} \int_0^T v_L(t) i_L(t) dt$$

$$H(t) = rac{n_1}{l_e} i_L(t)$$

 I_{DC} as bias

$$B(t) = \frac{1}{n_2 \cdot A_e} \int v_L(t) dt$$

B₀ unknown

Effect of phase delay in the measurements

- Small delay between the voltage and current leads to large errors in the measurement:
 - This delay cannot be distinguished from losses
 - Sinusoidal: $\Delta P_{loss} \approx V \cdot I \cdot |t_{delay}| \cdot \pi \cdot f$
 - Triangular: $\Delta P_{loss} \approx V_{in} \cdot I_{pk} \cdot |t_{delay}| \cdot 4 \cdot f$

Neglecting losses; small angle approximation

Well studied issue and known limitation of this method:

- High frequencies
- Low loss materials

Main reason to use other methods instead

Effect of phase delay

B-H loop enlarged (or shrank depending on the sign of the delay) Shape severely affected when switching noise is present

Tektronix DPO4054

Gain error depends on the vertical scale:

- Scale selected to maximize the range for each point
- Error affecting B_{ac} readings and P_V

• Error = $1.5\% \cdot |read| + 0.15 div + 1.2 mV$

- For a 10 V_{pk-pk} signal, measured at 5 V/div \rightarrow 7.5% error!
- Error concentrated in the regions where the scale changes

N87, R34.0X20.5X12.5, triangular 50% duty cycle, $T = 25^{\circ}$ C, unbiased <u>https://download.tek.com/manual/077024701Rev_A_web.pdf</u>

Offset error depending on the vertical scale too Offset error affecting H_{dc}

A better scope might help

Vertical and horizontal sampling is enough in most cases (8 bits, 8 ns)
Example of heavy downsampling
1 sample every 16 in the original
v_L and i_L rounded to 1/10th of pk-pk

Core losses barely affected

N87, R34.0X20.5X12.5, triangular 50% duty cycle, $T = 25^{\circ}$ C, unbiased f = 100 kHz, $B_{ac} = 60$ mT

Effect of parasitic elements in the circuit

- On the voltage measurement, change the current measured:
 - Scope and probe resistance $(R_{probe,scope} >> "R_{core}" \rightarrow ok)$
 - Scope and probe capacitance
- On the current measurement:
 - Parasitic inductances and capacitances should be minimized
- On the DUT:
 - Affect the amount of current flowing through the core
 - C_{ps} is not so significant if a 1:1 transformer is used

Capacitive effects:

- B-H loops are affected by switching speed
- Dip in the current waveform

Other non-idealities:

- Current + shunt \rightarrow voltage drop
- Power amplifier \rightarrow distortion
- Fixed clock times → limited PWM resolution
- Dead time (70 ns)→different transitions
 - 500 kHz 10% duty \rightarrow 200 ns rise time

Postprocessing

Voltage, current \rightarrow fundamental frequency \rightarrow P_V , B, H, etc

Single cycle algorithm:

- Horizontal resolution affected
- Vertical resolution ↑
- Possible filtering effect

Measures must be taken to ensure that data quality is not impaired

Effect of the variation of temperature

$$P_{loss} \rightarrow T \uparrow \uparrow \longrightarrow P_{loss} = f(T)$$

Thermal management is a must

Oil bath + magnetic stirrer \rightarrow Good solution ... but some ΔT still

N87, R34.0X20.5X12.5, triangular 50% duty cycle, $T = 25^{\circ}$ C, unbiased

Data is reproducible when the same core is tested again Slight differences when N_{turns} changes \rightarrow different voltage and current

N87, R34.0X20.5X12.5, triangular 50% duty cycle, $T = 25^{\circ}$ C, unbiased

80/db/fer/r 34 0 20 5 12 5.pdf

Differences during sintering/firing also add tolerance to properties. Tolerances in dimensions add to core loss variation.

$$l_{e} \pm 2.3\% \qquad l_{e} = \frac{\pi \ln \frac{d_{o}}{d_{i}}}{\frac{1}{d_{i}} - \frac{1}{d_{o}}}$$

$$A_{e} \pm 11\% \qquad A_{e} = \frac{h}{2} \frac{\ln^{2} \frac{d_{o}}{d_{i}}}{\frac{1}{d_{i}} - \frac{1}{d_{o}}}$$

$$V_{e} \pm 10.5\% \qquad V_{e} = \frac{h}{2} \frac{\pi \ln^{3} \frac{d_{o}}{d_{i}}}{\left(\frac{1}{d_{i}} - \frac{1}{d_{o}}\right)^{2}}$$

$$\frac{d_{a} (mm) \ d_{i} (mm) \ Height (mm) \ 34.0 \pm 0.7 \ 20.5 \pm 0.5 \ 12.5 \pm 0.3 \ 125 \pm 0.3$$

N87, R34.0X20.5X12.5, triangular 50% duty cycle, $T = 25^{\circ}$ C, unbiased

19

Summary

- Error analysis is a **must**
- Needed to compare data gather using different methods
- Best if specified for each datapoint and each source
- We need to find a standard way to report losses in measurements

Future work

- Add errors to the webpage
- Provide specific temperature measurements
- Study the impact of dv/dt on core losses

Further reading

• Quantifying the Complexity of Modeling Power Magnetic Material Characteristics.

• Machine Learning Framework for Modeling Power Magnetic Material Characteristics.

Minjie Chen

Yuxin Chen

Haor Evan an Li Dogari

u

Charles

Sullivan

Andrew

Nadler

Min

Luo

Thomas

Guillod

Shukai Wang

Arielle Vineet Rivera Bansal

Thank you for your interest!

Data available at: https://mag-net.princeton.edu/

IS01 - Core Loss Measurements for Different Materials and Excitations By Diego Serrano and Minjie Chen; Email: minjie@princeton.edu

