1st IEEE International Challenge in Design Methods for Power Electronics

2023 PELS-Google-Enphase-Princeton MagNet Challenge

MagNet 2023

Executive Summary, January 26, 2024

Minjie Chen, Haoran Li, Shukai Wang, Thomas Guillod, Charles R. Sullivan

MagNet 2023 Team Princeton University & Dartmouth College pelsmagnet@gmail.com

"It's time to upgrade the Steinmetz Equation" – in 100-year honor of Prof. Charles P. Steinmetz (1865-1923)

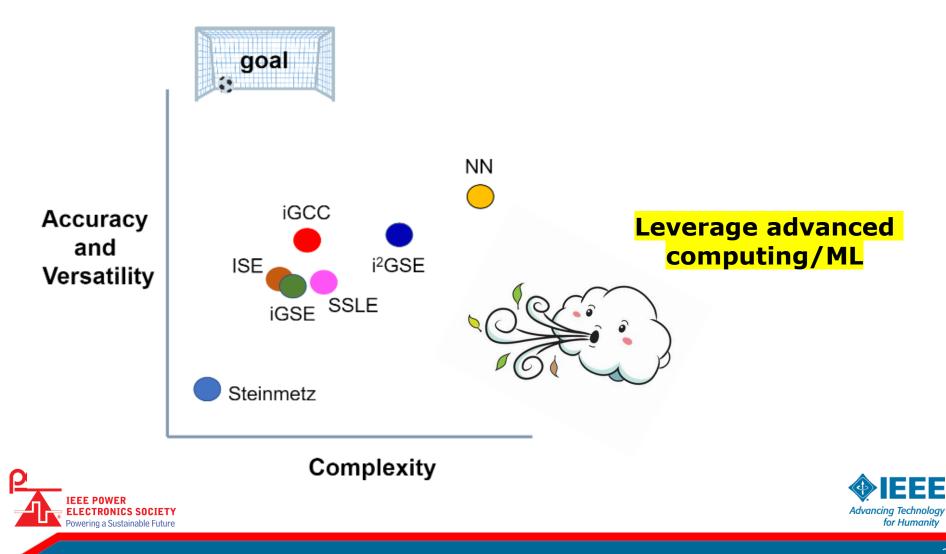
Do you like Steinmetz Equation?

 $P_{\nu} = k \times f^a \times B^b$

- Yes, but can be better!
- Perhaps the **weakest** link in power electronics.
- Not much physics, not accurate.
- No waveform, temperature, dc-bias, etc.
- Better first-principle physical models?
- More accurate & capable data-driven models?

Charles Steinmetz (1865-1923)

If not, how can we improve/upgrade it?


o Improve - Stay within the Steinmetz framework?

- ✓ Leverage all the existing explanation and carry the historical understanding / data / knowledge about core loss.
- Upgrade Jump outside of the Steinmetz framework?
 - ✓ Try machine learning or other more advanced signal processing methods for modeling magnetics.

Data is ready / tools are ready / need a community

Equation-based Methods vs. Data Driven Methods

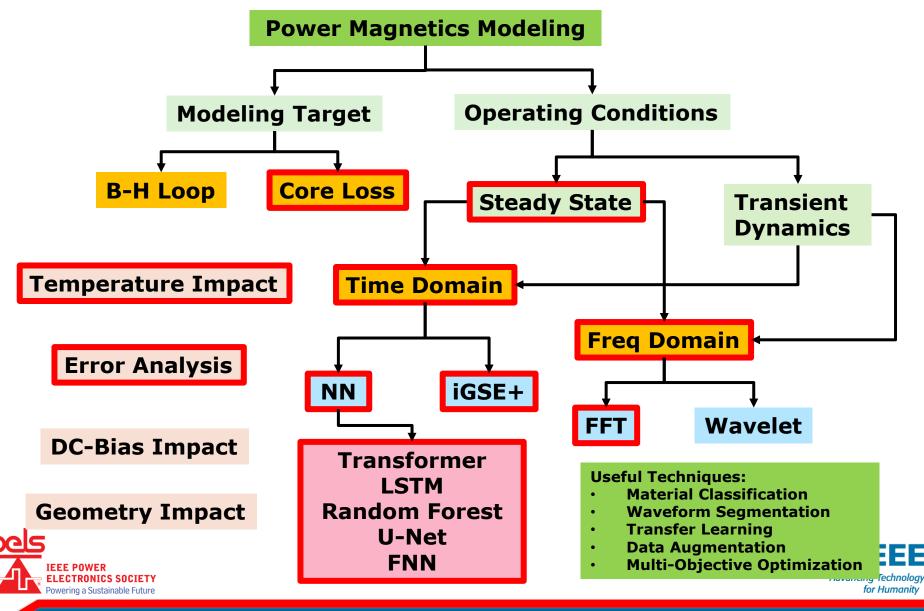
ImageNet Challenge → MagNet Challenge

High Quality Open-Source Image Data (>14M images in 20k categories)

https://www.image-net.org/challenges/LSVRC/

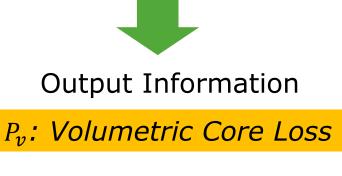
High Quality Open-Source Magnetics Data (>2M B-H loops for 15 materials)

https://mag-net.princeton.edu


- An opportunity to promote opensource culture in power electronics.
- Unify next generation power electronics engineers who can USE advanced machine learning / software tools as a community

- Open
- Transparent
- Inclusive
- Education
- Research
- Standard

Methodology Summary


Competition Rules of MagNet Challenge

 MagNet 2023 rule: understand the core loss dependency on waveform, temperature and frequency, and *systematically* develop a Python/MATLAB function for each material as the an "interactive" datasheet (like SPICE model for MOSFETs).

 $P_v = function \{B(t), frequency, temperature\}$

Input Information

B(t): Single-cycle 1024-step waveform	in mT
f: Excitation frequency	in kHz
T: Operating temperature	in °C

Winning Criteria:

- Model Accuracy (% error)
- Model Size (# of parameters)
- Novelty (concept / strategy)
- Software Engineering
- Potential to become a standard method???

MagNet Challenge Timeline

March 2023: Launched MagNet Challenge

- Advance data driven methods for modeling power magnetics
- Bridge power electronics and machine learning
- **Promote** open-source culture in power electronics

July 2023: Registration (40 teams from 17 countries)

- Denmark, USA, Brazil, China, India, Belgium, Spain, Singapore, Taiwan
- Germany, Italy, South Korea, Austria, Nepal, Netherland, UK, Australia

August 2023: Tutorials (#1 to #4, hundreds of participants)

November 2023: Qualification (25 teams from 14 countries)

- USA, China, India, Belgium, Spain, Singapore, Taiwan
- Germany, Italy, Austria, Nepal, Netherland, UK, Australia

December 2023: Final Submission (24 teams from 14 countries)

- USA, China, India, Belgium, Spain, Singapore, Taiwan
- Germany, Italy, Austria, Nepal, Netherland, UK, Australia

January 2024: Review and Code Evaluation

February 2024: Final Winner Announcement

6

MagNet Challenge Registrations

- 40 Universities from 18 Countries
- Denmark, USA, Brazil, China, India, Belgium, Spain, Singapore, Taiwan, Germany, Italy, South Korea, Austria, Nepal, Netherland, UK, Australia
- Aalborg University, Aalborg, Denmark 🏴
- Arizona State University, Tempe AZ, USA 🛤
- Cornell University Team 1, Ithaca, USA 🎫
- Cornell University Team 2, Ithaca, USA 🎫
- Federal University of Santa Catarina, Brazil
- 🔹 Fuzhou University, Fuzhou, China 🏴
- 🔹 Hangzhou Dianzi University, Hangzhou, China 🏴
- Indian Institute of Science, Bangalore, India 📫
- Jinan University, Guangzhou, China 🏴
- KU Leuven, Leuven, Belgium 📕
- Mondragon University, Hernani, Spain 💶
- Nanjing University of Posts and Telecom., China
- Nanyang Technological University, Singapore 🛤
- Nation Taipei University of Technology, Taiwan 🏴
- Northeastern University, Boston MA, USA 🛤
- Paderborn University, Paderborn, Germany
- Politecnico di Torino, Torino, Italy 🛄
- Princeton University, Princeton NJ, USA 🎫 (host)
- Purdue University, West Lafayette IN, USA IM
- Seoul National University, Seoul, Korea 🛤

- 🔹 Southeast University Team 1, Nanjing, China 💻
- 🔹 Southeast University Team 2, Nanjing, China 🏴
- Tribhuvan University, Latipur, Nepal 💺
- Tsinghua University, Beijing, China 🏴
- TU Delft, Delft, Netherland 🖛
- University of Bristol, Bristol, UK 🗱
- University of Colorado Boulder, Boulder CO, USA 🛤
- University of Kassel, Kassel, Germany
- University of Manchester, Manchester, UK 🗱
- University of Nottingham, Nottingham, UK 🕮
- University of Sydney, Sydney, Australia 🏁
- University of Tennessee, Knoxville, USA Image: USA
- University of Twente Team 1, Enschede, Netherland
- University of Twente Team 2, Enschede, Netherland 🖛
- University of Wisconsin-Madison, Madison WI, USA 🛤
- Universidad Politécnica de Madrid, Madrid, Spain 🏴
- Xi'an Jiaotong University, Xi'an, China 🏴
- 🔹 Zhejiang University, Hangzhou, China 💻
- Zhejiang University-UIUC, Hangzhou, China 🛤

Advancing Technology for Humanity

MagNet Challenge Final Submissions

- Arizona State University, Tempe AZ, USA us
- Fuzhou University, Fuzhou, China cN
- Hangzhou Dianzi University, Hangzhou, China cN
- Indian Institute of Science, Bangalore, India IN
- KU Leuven, Leuven, Belgium BE
- Mondragon University, Hernani, Spain Es
- Nanjing University of Posts and Telecom., Nanjing, China CN
- Nanyang Technological University, Singapore sg
- National Taipei University of Technology, Taipei, Taiwan Tw
- Paderborn University, Paderborn, Germany DE
- Politecnico di Torino, Torino, Italy IT
- Silicon Austria Labs, Graz, Austria AT
- Southeast University Team 1, Nanjing, China CN
- Southeast University Team 2, Nanjing, China CN
- Tribhuvan University, Lalitpur, Nepal NP
- Tsinghua University, Beijing, China cN
- TU Delft, Delft, Netherland NL
- University of Bristol, Bristol, UK GB
- University of Colorado Boulder, Boulder CO, USA us
- University of Manchester, Manchester, UK GB
- University of Sydney, Sydney, Australia Au
- University of Tennessee, Knoxville, USA us
- Xi'an Jiaotong University, Xi'an, China cN
- Zhejiang University-UIUC, Hangzhou, China cN

MagNet 2023 Organizing Team

٠

MagNet 2023 co-Chairs:

- Minjie Chen, Princeton, USA
- Charles Sullivan, Dartmouth, USA

Executive Committee:

- Haoran Li, Princeton, USA
- Thomas Guillod, Dartmouth, USA
- Shukai Wang, Princeton, USA
- Diego Serrano, Princeton, USA

Academic Advisory Committee:

- David Perreault, MIT, USA
- Johann Kolar, ETH Zurich, Switzerland
- Dragan Maksimovic, CU Boulder, USA
- SY Ron Hui, NTU, Singapore

Industry Advisory Committee:

- Shuai Jiang, Google, USA
- David Schumacher, Enphase, USA

Ad Hoc Advisory Committee:

- Maeve Duffy, U. Galway, Ireland
- Matt Wilkowski, EnaChip, USA
- George Slama, Wurth Elektronik, USA
- Edward Herbert, PSMA, USA
- Jens Schweickhardt, Germany
- Ziwei Ouyang, DTU, Denmark
- Alex Hanson, UT Austin, USA

PELS TC10 Steering Committee:

- Kevin Hermanns, PE-Systems, Germany
- Shirley Pei, University of Bath, UK
- Subham Sahoo, Aalborg, Denmark
- Miroslav Vasic, UPM, Spain

PELS Signee:

- Pat Wheeler PELS VP
- Mario Pacas PELS VP
- Dehong Xu PELS VP
- Frede Blaabjerg President
- Liucheng Chang President

Advancing Technology for Humanity

MagNet Challenge \$50,000 Budget

Model Performance 1 st Place \$10,000	Model Novelty 1 st Place \$10,000	Outstanding Software Engineering \$5,000
Model Performance 2 nd Place \$5,000	Model Novelty 2 nd Place \$5,000	Honorable Mention
Model Performance	Model Novelty	\$1,000 × 9
3rd Place \$3,000	3 rd Place \$3,000	

Open-Source Matlab/Python Package

 Award winning teams are invited to join an open-source community effort to develop a standard MagNet Matlab/Python software package for modeling the 15 materials and extend it beyond.

Intellectual Property

- MagNet Challenge has no restrictions on intellectual property.
- We encourage open-source culture and open-source licenses.
- Presenting the models to MagNet team is considered as public disclosure.
- Student teams should take actions before disclosure if IP protection is needed.

Competition Rules

Goal: A systematic method to develop an accurate and compact model for a new power magnetics material.

Step 1: Method Development

Practice Dataset: Massive Data for 10 Old Materials
 3C90 / 3C94 / 3E6 / 3F4 / 77 / 78 / N27 / N30 / N49 / N87

Step 2: Method Verification

- Training Dataset: Limited Data for 5 New Materials
- Testing Dataset: Massive Data for 5 New Materials
- Sampled in particular ways to test models from different angles

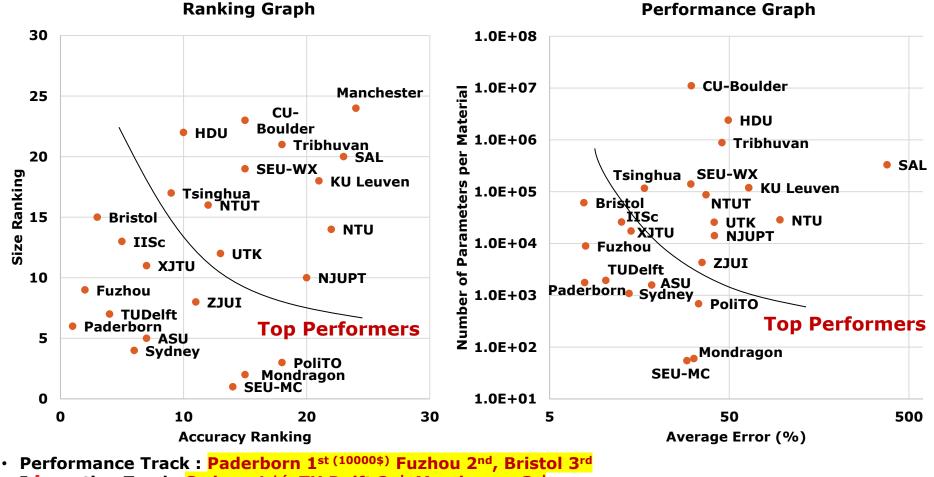
	"tiny data '	special material	"temperature	"waveform	"f and B
	challenge"	challenge"	challenge"	challenge"	challenge"
# Data Points	Material A	Material B	Material C	Material D	Material E
	(3C92)	(T37)	(3C95)	(79)	(ML95S)
Training Data	2432	7400	5357	580	2013
	(101/694/1637)	(364/2253/4783)	(215/1679/3463)	(145/400/35)	(57/667/1289)
Testing Data	7651	3172	5357	7299	3738
	(334/2174/5143)	(147/980/2045)	(212/1751/3394)	(61/2247/4991)	(107/1205/2426)

*Total # (sine / triangle / trapezoidal)

Performance Overview

		"tiny c challer		"special material challenge"		"temper challer		-	eform enge″	"f and challe	
		Material A	Material A	Material B	Material B	Material C	Material C	Material D	Material D	Material E	Material E
Team Name	Team #	% Error	# Size	% Error	# Size	% Error	# Size	% Error	# Size	% Error	# Size
ASU	#1	9.6	1576	5.6	1576	8.5	1576	55.3	1576	13.5	1576
Bristol	#2	8.5	90653	2.0	90653	4.5	90653	<mark>15.9</mark>	16449	8.0	16449
CU-Boulder	#3	40.5	11012900	7.8	11012900	25.2	11012900	44.1	11012900	36.3	11012900
Fuzhou	#4	4.9	8914	2.2	8914	2.9	8914	<mark>20.7</mark>	8914	9.0	8914
HDU	#5	16.0	2396048	3.7	2396048	6.8	2396048	201.4	2396048	19.3	2396048
IISc	#6	4.6	25923	2.8	25923	6.8	25923	39.5	25923	9.3	25923
KU Leuven	#7	72.4	118785	58.0	118785	66.1	118785	71.3	118785	53.7	118785
Manchester	#8	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mondragon	#9	21.3	60	7.9	60	14.4	60	93.9	60	21.5	60
NJUPT	#10	45.9	9728	6.9	29600	26.4	21428	59.4	1740	68.4	8052
NTU	#11	99.8	28564	88.7	28564	93.7	28564	99.3	28564	97.8	28564
NTUT	#12	19.9	86728	7.4	86728	7.7	86728	65.9	86728	85.1	86728
Paderborn	#13	4.8	1755	2.2	1755	3.4	1755	<mark>22.2</mark>	1755	6.6	1755
PoliTO	#14	32.1	610	33.4	760	27.7	748	47.1	700	28.5	610
SAL	#15	351.2	329537	138.7	329537	439.5	329537	810.1	329537	152.8	329537
SEU-MC	#16	38.8	81	6.9	56	21.0	61	50.5	23	28.2	53
SEU-WX	#17	26.1	139938	12.9	139938	15.6	139938	79.1	139938	19.1	139938
Sydney	#18	10.0	1084	3.7	1084	5.0	1084	30.7	1084	19.9	1084
Tribhuvan	#19	24.5	1033729	8.0	1033729	8.9	1033729	67.9	276225	118.7	1033729
Tsinghua	#20	13.1	116061	6.4	116061	9.3	116061	29.9	116061	25.7	116061
TUDelft	#21	7.2	1419	1.9	2197	3.5	2197	29.6	1419	9.1	2454
υтк	#22	15.6	23000	4.3	23000	9.3	23896	79.2	32546	98.0	25990
ХЈТИ	#23	12.4	17342	3.8	17342	10.7	17342	30.0	17342	14.1	17342
ZJUI	#24	15.5	4285	6.1	4285	10.1	4285	67.9	4285	77.0	4285
Pow	ering a Sustainable Fu	ture									for Humanity

Material-Specific Ranking


Team	Mate	rial A	Mate	rial B	Mate	rial C	Materia	al D	Mate	rial E	Overall I	Ranking
Name	Accuracy	Size	Accuracy	Size	Accuracy	Size	Accuracy	Size	Accuracy	Size	Accuracy	Size
ASU	6	6	10	5	9	5	12	6	6	5	7	5
Bristol	5	16	2	16	4	16	1	11	2	11	3	15
CU-Boulder	19	23	16	23	18	23	9	23	15	23	15	23
Fuzhou	3	9	4	9	1	9	2	10	3	10	2	9
HDU	12	22	7	22	6	22	22	22	9	22	10	22
IISc	1	13	5	12	7	13	8	13	5	13	5	13
KU Leuven	21	18	21	18	21	18	17	18	16	18	21	18
Manchester	24	24	24	24	24	24	24	24	24	24	24	24
Mondragon	14	1	17	2	15	1	20	2	11	2	15	2
NJUPT	20	10	14	14	19	11	13	7	17	9	20	10
NTU	22	14	22	13	22	14	21	14	20	15	22	14
NTUT	13	15	15	15	8	15	14	16	19	16	12	16
Paderborn	2	7	3	6	2	6	3	8	1	6	1	6
PoliTO	17	3	20	3	20	3	10	3	14	3	18	3
SAL	23	20	23	20	23	20	23	21	23	20	23	20
SEU-MC	18	2	13	1	17	2	11	1	13	1	14	1
SEU-WX	16	19	19	19	16	19	18	19	8	19	15	19
Sydney	7	4	6	4	5	4	7	4	10	4	6	4
Tribhuvan	15	21	18	21	10	21	16	20	22	21	18	21
Tsinghua	9	17	12	17	12	17	5 (undergrad)	17	12	17	9	17
TUDelft	4	5	1	7	3	7	4	5	4	7	4	7
UTK	11	12	9	11	11	12	19	15	21	14	13	12
UTCX	8	11	8	10	14	10	6	12	7	12	7	11
ZJUI	10	8	11	8	13	8	15	9	18	8	11	8

Estimated Competition Ranking

Note: Winning models may NOT be good, Good models may NOT be winning

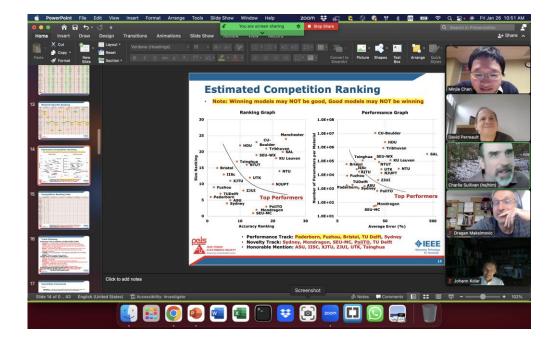
Lineovation Track: Sydney 1^{st (}, TU Delft 2nd, Mondragon 3rd

- Tion orable Mention (\$1000): ASU, IISC, XJTU, ZJUI, UTK, Tsinghua, SEU-MC, PoliTO, SEU-WX
- Software Engineering: Sydney

Powering a Sustainable Future

Advancing Technology for Humanity

Final Competition Results


- Performance Track :
 - Paderborn 1st (10000\$)
 - Fuzhou 2nd (\$5000),
 - Bristol 3rd (\$3000)
 - <mark>= \$18000</mark>
- Innovation Track:
 - Sydney 1st (10000\$),
 - TU Delft 2nd (\$5000),
 - Mondragon 3rd (\$3000)
 - <mark>= \$18000</mark>

Honorable Mention (\$1000):

- ASU, IISC, XJTU, ZJUI, UTK,
- Tsinghua, SEU-MC, PoliTO, SEU-WX
- <mark>= \$9000</mark>

Software Engineering: Sydney = \$5000

Track Ranking

Performance Track (3 candidates, \$10,000, \$5,000, \$2,000):

- **Paderborn** excellent feature engineering for improved accuracy
- Fuzhou good transfer learning exercise and solid fine-tuning strategy, identified N87 as a material that represent general core loss characteristics and can serve as a "star material"
- **Bristol** used 3C90 as the starting model, down-sample from 1024 to 128 after trail and error, random flip and shift (best performance for most challenging material)
- **TU Delft** FFT pre-processing + multi-objective optimization (much smaller model size)
- **Sydney** physics inspired neural network

Novelty Track (5 candidates, \$3000 each?):

- **Sydney:** static hysteresis network and dynamic network and graphical user interface development
- **SEU-MC** lumped circuit model oriented analytical approach
- Mondragon intensive curve fitting approach showing the performance limits of waveform classification and curve fitting
- **PoliTO** hybrid NN and analytical approach
- TU Delft FFT pre-processing + multi-objective optimization

Software Engineering Award (\$2500 each?): Sydney / Paderborn

All other Teams (\$500 each?)

IEEE POWER ELECTRONICS SOCIETY Powering a Sustainable Future Advancing Technology for Humanity

Committee Comments

Thomas:

- Mondragon I like the core loss analysis that they did to develop the model. And how the model is assembled together to consider many physical effects.
- **NJUPT** Loss map based approach with loss separation. The performances are not great, the code is quite convoluted but the idea is interesting.
- SEU-MC Model is extremely interesting and also applicable a circuit simulation model. Curve fitting approach with the proposed circuit (not clear how the curve fitting is done and the different ranges are assembled). Non-sinusoidal data handling with FFT, which is an approximation. I would say the predicted losses over different frequencies has discontinuities.
- **SEU-WX** Cool approach trying to mix micromagnetic modeling (LLG equation) with ML. Model size and performance are not great but the underlying idea is really good.
- Sydney Probably my favorite submission. Good performance with a reasonable model size. Great physics inspired neural network. Clear code. I would include them in the performance track.
- ZJUI Physics inspired network using the iGSE to constrain the NN (as a penalty in the loss function).

Committee Comments

Haoran / Shukai

- Performance Track:
 - #1 Paderborn physics-inspired feature engineering and well-designed CNN-based neural network training
 - #2 Fuzhou sequence-to-scalar transformer neural network model with transfer learning technique and effective training tricks for better accuracy
 - #3 Bristol effective data augmentation, LSTM-based neural network with specific algorithm selecting the pre-trained model for transfer learning
 - #4 TU Delft FFT+FNN method, where neural network is well designed and trained with Optuna optimization
- Novelty Track:
 - #1 SEU-MC vector magnetic circuit theory-based analytical model with careful curve-fitting
 - #2 Mondragon analytical model combining the segmentation of hysteresis loss and eddy loss, curve-fitting in iGSE, assumption of CWH, and relaxation effect in i2GSE
 - #3 Sydney magnetization mechanism-inspired neural network method, combining the hysteresis characteristics and the neural network structure
- Honorable Mention: PoliTO, IISC, ZJUI, ASU, XJTU

Appendix: Team Highlights

What has worked? What has NOT worked? Most interesting discoveries? Paths toward a standard model? How can we do better? Next challenge?

ASU – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
7 th	5 th	18.53	1576	B+	

Summary:

- Downsampling from 1024 to 24 points with 2% loss in accuracy
- Standard feedforward neural network model to combine B, T, f
- Transfer learning from the 10 materials to the 5 new materials
- Decent model performance and model size
- A systematic machine learning practice

1) Input to model (29x1)

- a) First 24 points sample of "B" (24x1)
- b) Temperature (4 temperature) one-hot encoding (4x1)
- c) Frequency (1x1)
- 2) Model: Feed Forward Neural Network with
 - a) Layer 1 : 29x29, Layer 2: 29x15, Layer 3: 15x15, Layer 4: 15x1
- 3) Output: 1x1 core loss

Material	Α	B	С	D	Е
Model size	1576	1576	1576	1576	1576
Training data size	2432	7400	5357	580	2013
Estimate 95th perc. Err.	7.9%	5.3%	8.2%	19.3%	10.2%
Sine 95th perc. Err.	18%	8%	20%	26%	21%
Tri 95th perc. Err.	6%	5%	7%	17%	10%
Trap 95th perc. Err.	6%	5%	7%	28%	9%
	TAB	LEI			

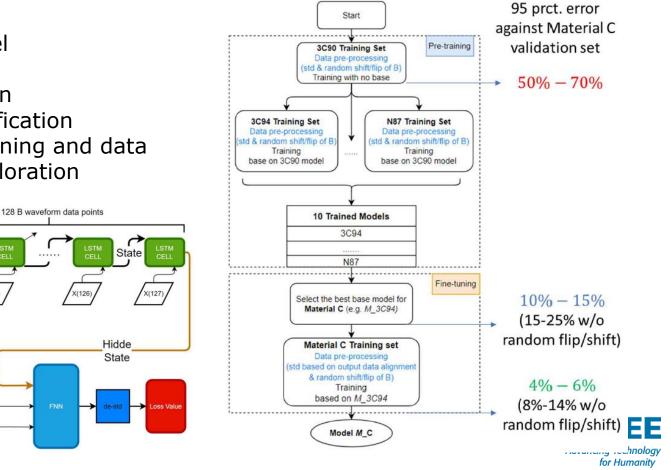
Model size for each material and estimates of 95th by wave

ТҮРЕ

Bristol – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
3 rd	15 th	7.77	60971.4	A-	

Summary:

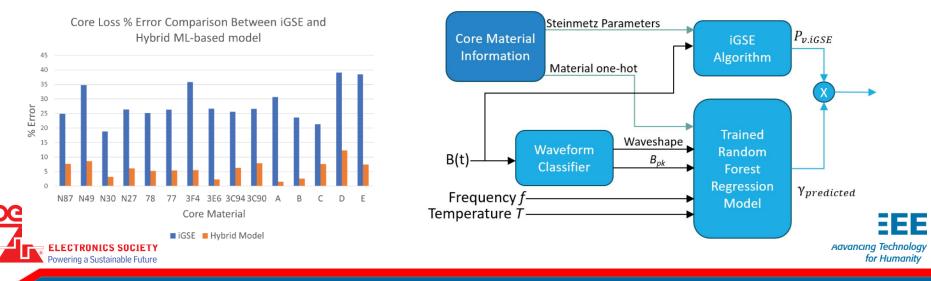

- LSTM + FNN Model .
- Transfer Learning •
- Data Augmentation .
- Thorough NN Verification •

LSTM

Good transfer learning and data • augmentation exploration

State

LSTN



CU Boulder – Hybrid Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
15 th	23 rd	30.77	11012900	A-	

Summary:

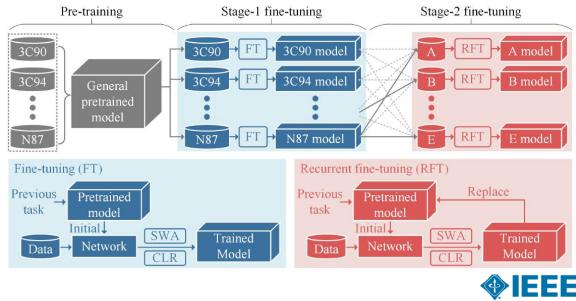
- Hybrid Model
- Waveform Classification
- Random Forest Regression (Simple Computing, Massive Memory)
- Used machine learning to fit a correction factor
- Good error distribution analysis and comparison with iGSE
- Large model size not favoring competition, good differentiation

Fuzhou U. – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
2 nd	9 th	7.94	8914	A-	

Summary:

- **Transformer-Projector Model**
- Transfer Learning Fine Tuning Strategy


Parameters^a

1025

Deep understanding about magnetics modeling and novel insights

TABLE III RESULTS OF RECURRENT FINE-TUNING. (TRAIN: VAL=9:1)

	А	В	С	D	Е
Scratch	4.90	2.28	3.61	14.45	7.61
Fine-tuning	4.05	2.17	2.93	7.58	4.74
Fine-tuning (long)	4.21	2.13	2.93	7.58	4.15
Recurrent fine-tuning	3.76	2.04	2.76	7.79	4.29

Linear (Tanh^b) (1024,1)(1024, 24)48 Linear (1024.24)(1024.24)600 Transformer Encoder MHSA (1024.24)(1024.24)2400 FFN (1024, 24)1984 (1024, 24)LN 96 . -**Projector Fusion** Linear (Tanh) (1024, 26)(1024, 40)1080 Linear (Tanh) (1024.40)(1024.40)1640 Linear (1024.40)(1024.1)41

TABLE I PARAMETERS COUNTING OF THE NETWORK.

Output size

Input size

Regression Head

1024 Linear 1

^a Total parameters: 8914. ^b The activation function of this Linear layer is Tanh.

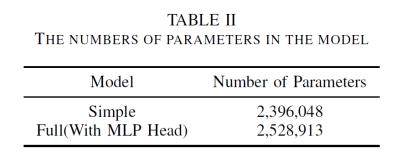
Layer

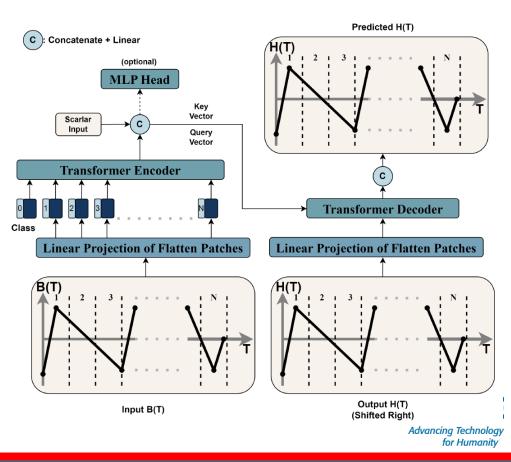
Projector B

Advancing Technology for Humanity

Hangzhou Dianzi U. – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
10 th	22 nd	49.44	2396048	B+	

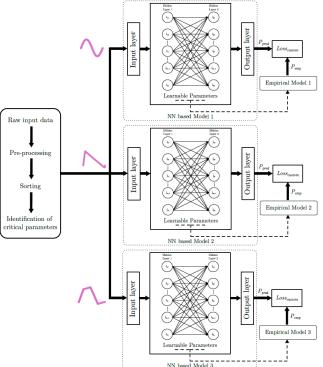

Summary:


EEE POWER

ELECTRONICS SOCIETY

Powering a Sustainable Future

- Vision Transformer model
- A ViT-based modeling method improved over Transformer-based methods.
- Pure NN approach with large NN models and parameters


IISc – Hybrid Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
5 th	13 th	12.59	25923	B+	

Summary:

- Waveform classification
- Separate parameters for separate excitation
- Customized training loss function
- Redefine the training loss to make sure the prediction follows the data to improve generality.
- Modifying factor to fix the difference between CWH model and data fitting.
- Bounding NN with analytical models
- Large model size, good accuracy

	IADLE II	
Model	. SIZE AND PARAMETERS FOR EACH EXCITATION AND MATERIALS	

TABLE II

	Model	Sinusoidal	Triangular	Trapezoidal
pels	Size	One input layer: (7,16) Two hidden layers: (16,256), (256,16) One output layer: (16,1)	One input layer: (8,16) Two hidden layers: (16,256),(256,16) One output layer:(16,1)	One input layer: (12,16) Two hidden layers: (16,256), (256,16) One input layer: (16,1)
	Parameters	8609	8625	8689
ELECTRONICS SO - Powering a Sustainable F				

KU Leuven – Hybrid Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
21 st	18 th	64.29	118785	Α	

Summary:

ECTRONICS SOCIET

Powering a Sustainable Future

- Generative Adversarial Network (GANET)-based model.
- A NN fights with a generative adversarial network until the discriminator cannot find the difference between the two.
- Advanced NN model exploration. Large model, ok accuracy.

TABLE I: Hyperparameters and Setups of
cGANET-based Model

Hyperparameter	Value
Epochs	2000
Batch Size	32
Activation	ReLu
Performance	Relative Error
Learning Rate	Scheduler
Optimizer	Adam
Generator Parameters	118785 (464.00 KB)
Discriminator Parameters	99585 (389.00 KB)

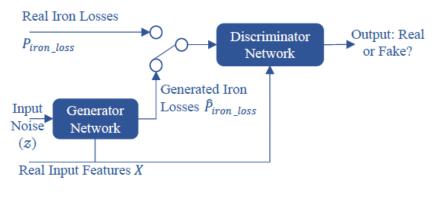


Fig. 2: Block Diagram of cGANET

Manchester – Analytical Model

- Tried to develop a model based on B, H, dB and dH
- Direct data interpolation method.
- Potential to lead to a dynamic transient model!
- Using the current T, B, H and dH/dt to predict dB/dH
- Key Assumption: B-H hysteresis can be piecewise constructed.

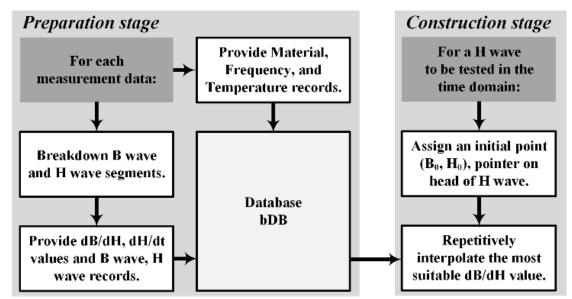


Fig. 2 The flow chart of the data interpolation method.

ELECTRONICS SOCIETY

Powering a Sustainable Future

Mondragon – Analytical Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
15 th	2 nd	31.81	60	Α	

Summary:

owering a Sustainable Future

- Pure Analytical Curve Fitting Approach
- 60 Parameters per material
- Do not capture the temperature effect
- Automated parameter fitting process

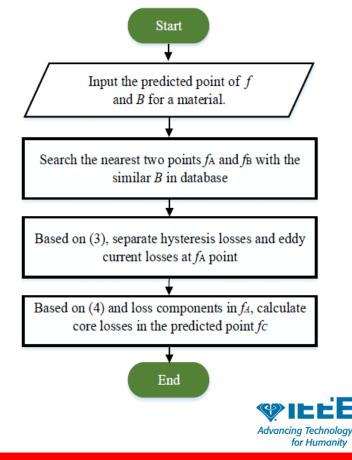
$$P_{\text{loss}} = \frac{1}{T} \int_0^T \left[k_1 \left| \frac{dB}{dt} \right|^{a_1} \Delta B^{b_1} + k_2 \left| \frac{dB}{dt} \right|^{a_2} \Delta B^{b_2} \right]$$

$$P_{\text{loss}} = \sum D \left[\exp \left(k_1' + a_1 \ln \left| \frac{dB}{dt} \right| + b_1 \ln \Delta B \right) + \exp \left(k_2' + a_2 \ln \left| \frac{dB}{dt} \right| + b_2 \ln \Delta B \right) \right]$$

$$P_{\text{loss}} = \sum \left[D \left(\exp \left(k_1' + a_1 \ln \left| \frac{dB}{dt} \right| + b_1 \ln \Delta B \right) + \exp \left(k_2' + a_2 \ln \left| \frac{dB}{dt} \right| + b_2 \ln \Delta B \right) \right] + f \exp \left(k_{rel}' + a_{rel} \ln t_{rel} + b_{rel} \ln \Delta B \right)$$

Mat	Temp	k'_1 a_1 b_1 k'_2 a_2 b_2 k'_{rel} a_{rel} b_{rel} p00 p10 p01 p20 p11 p02	E_{95th}
	· ·	2 3859 1.1314 1.9734 -29.1130 3.2238 -0.5807 11.6155 0.6969 2.2377	•
	25℃	19.6599 -1.8043 2.6016 0.1299 0.0197 -0.1340	
Ш	50°C	1.4351 1.2128 2.1435 -32.3441 3.4352 -0.7411 7.7280 0.3912 2.4369	
Material E		18.0486 -1.4739 3.2517 0.1125 -0.0639 -0.3650 1.7758 1.1882 2.1923 -32.5128 3.4874 -0.4860 11.4230 0.6770 2.3816	
ter	70°C	1.7758 1.1882 2.1923 -32.5128 3.4874 -0.4860 11.4230 0.6770 2.3816 14.3141 -0.8358 3.6948 0.0829 -0.1775 -0.9002	
Ma	90°C	1.9566 1.1807 2.1885 -33.1304 3.5205 -0.5941 11.2878 0.6594 2.3600	
		36.9005 -5.1469 2.2420 0.2855 -0.0357 -0.1442	
	A11	60 parameters, 4x(9+6)	23.60%
	25°C	3.5849 1.0122 1.7976 -19.0609 2.5856 -0.0737 0 0 0 11.3004 -0.4019 3.0320 0.0670 -0.0746 -0.1627	
0		1.2973 1.1999 1.8173 -27.8189 3.1403 -0.8648 13.3134 0.9304 1.0925	
I	50°C	15.3094 -1.6607 0.9518 0.1511 0.2150 0.1075	
Material D	70°C	2.0268 1.1467 2.0771 -27.8331 3.1534 -0.7978 -0.2020 -0.3647 3.3655	
ate		-12.6105 4.3570 14.2491 -0.1631 -1.0063 -0.5620 -1.9950 1.4827 2.1022 -28.7020 3.1720 -0.9693 56.7664 3.7447 5.2287	
\geq	90°C	-1.9950 1.4827 2.1022 -28.7020 3.1720 -0.9095 58.7664 3.7447 5.2287 31.3326 -3.5993 6.4942 0.2038 -0.2248 0.0109	
	A11	60 parameters, 4x(9+6)	22.87%
	25°C	-0.8090 1.2789 1.3626 18.9273 2.6114 -0.3846 5.5581 0.3012 2.5923	· ·
	250	26.7373 -3.3736 4.1984 0.2043 -0.1506 -0.0248	
0	50°C	-0.7740 1.2812 1.5520 -18.1526 2.5238 -0.4213 6.4205 0.3511 2.7855 41.6026 -6.0729 4.7102 0.3290 -0.1567 0.0543	
Material C		-0.4455 1.2615 1.8683 -18.0382 2.5584 -0.3343 5.5969 0.2720 3.0418	
atei	70°C	31.1284 -4.0782 7.5609 0.2357 -0.3864 0.0504	
ž	90°C	-1.8676 1.3913 1.8703 -18.4802 2.5937 -0.3934 0.9339 14.0935 4.8501	
		31.4340 -4.2160 7.2207 0.2471 -0.3361 0.1190	14 600/
	All	60 parameters, 4x(9+6) -0.6082 1.2897 1.8224 -12.5537 2.1550 -0.1191 5.6830 0.2541 2.9877	14.60%
	25℃	-0.0082 1.2897 1.8224 -12.5557 2.1550 -0.1191 5.0850 0.2541 2.9877 4.5861 0.3641 5.0111 0.0509 -0.1958 0.0717	
в	50°C	-0.0972 1.2595 1.8690 -11.8026 2.1140 -0.0925 3.6906 0.0925 3.0152	
al	30°C	0.9186 1.0051 4.8621 0.0243 -0.1831 0.0804	
er.	70°C	1.1251 1.1786 2.0075 -10.7112 2.0489 -0.0328 4.3712 0.1330 2.8837 -2.6573 1.7074 5.0152 -0.0087 -0.2046 0.0653	
Material B		-2.0575 1.7074 5.0152 -0.0087 -0.2046 0.0055 -0.1711 1.2885 1.7722 -9.7093 1.9818 -0.0017 4.3702 0.1647 2.5736	
2	90°C	-9.0400 2.8436 4.9328 -0.0588 -0.2100 0.0434	
	A11	60 parameters, 4x(9+6)	8.074%
	25℃	4.7442 0.8548 1.4052 -18.7122 2.7643 -0.2571 2.4296 0.0808 2.4503	•
	250	6.9005 -5.1469 2.2420 0.2855 -0.0357 -0.1442	
V	50°C	3.1228 0.9707 1.3666 -19.5150 2.8185 -0.3063 5.0173 0.2651 2.8145 45.3397 -6.7173 3.1549 0.3577 -0.1022 -0.1063	
Material A		-2.4755 1.4555 1.0968 -21.0851 2.9037 -0.5311 -5.9455 162.8406 36.2542	
ter	70°C	-2.4755 1.4555 1.0908 -21.0851 2.9057 -0.5511 -5.9455 102.8400 50.2542 36.9005 -5.1469 2.2420 0.2855 -0.0357 -0.1442	
Ma	90°C	-6.8894 1.8204 1.2179 -18.4851 2.7187 -0.3902 -3.2823 106.0626 24.0666	
_	90-0	35.5932 -5.4185 3.7661 0.3210 -0.0771 0.0755	
	A11	60 parameters, 4x(9+6)	18.24%

Advancing Technology for Humanity


NJUPT – Analytical Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
20 th	10 th	41.40	14109.6	A-	

Summary:

- Pure Analytical Curve Fitting Approach
- Very few parameters for each material
- Need waveform classification
- Curve fitting for different duty ratios
- Can't be generalized for other waveforms

D_1	D_2	D_3	D_4	V_{D1}^*	V_{D2}^{*}	V_{D3}^*	V_{D4}^*
0.1	0.4	0.1	0.4	1	0	-1	0
0.2	0.3	0.2	0.3	1	0	-1	0
0.3	0.3	0.1	0.3	0.667	-0.167	-1	-0.167
0.3	0.2	0.3	0.2	1	0	-1	0
0.4	0.2	0.2	0.2	0.667	-0.167	-1	-0.167
0.4	0.1	0.4	0.1	1	0	-1	0
0.5	0.2	0.1	0.2	0.429	-0.286	-1	-0.286
0.5	0.1	0.3	0.1	0.667	-0.167	-1	-0.167
0.6	0.1	0.2	0.1	0.429	-0.286	-1	-0.286
0.7	0.1	0.1	0.1	0.25	-0.375	-1	-0.375

NTU – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
22 nd	14 th	95.88	28564	В	

Summary:

- CNN+Transformer
- Comparative study for five models
- B(t) is treated as a one-dimensional (1-D) image for ViT.
- Modeling performance is not superior
- Large model size and high error
- Perhaps bugs in coding

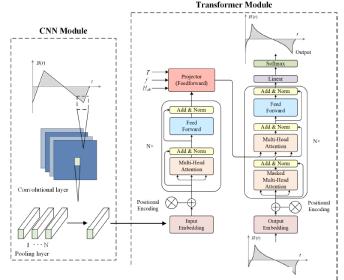


TABLE I Comparison of different models with baseline

Name	Model	Parameters	CNN In	Transformer In	Decoder Layer	Average Error	95-Prct Error	Running Time
Baseline	Transformer	28481	NA	128*1	1	3.05%	9.64%	129mins
Model 1	Transformer	28481	NA	256*1	1	2.47%	8.38%	304mins
Model 2	CNN+Transformer	28564	256	128*2	1	2.4%	7.94%	152mins
Model 3	CNN+Transformer	28564	512	128*2	1	2.07%	6.97%	152mins
Model 4	CNN+Transformer	62788	512	128*2	4	1.45%	4.72%	502mins

NTUT – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
12 th	16 th	37.18	86728	Α-	

Summary:

- Neural network model •
- Treat f and T equally as B •
- No down-sampling •
- Similarity comparison •

	Material	3C90	3C94	3E6	3F4	77
	А	75	132	294	1	341
	В	93	223	1934	0	792
	С	263	386	152	12	728
	D	47	11	0	28	3
	E	11	1	0	152	5
	Material	78	N27	N30	N49	N87
	Α	256	181	348	5	98
	в	528	259	2241	5	217
	С	808	620	446	60	444
	D	21	37	9	216	26
E POWER	Е	17	30	2	462	6

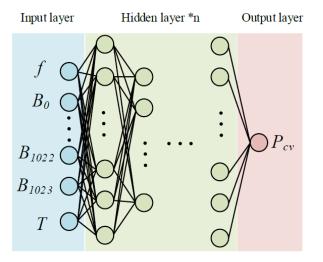
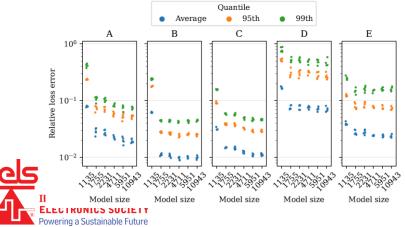


Fig. 1 A schematic diagram of the FNN architecture.

TABLE 9 Number of Parameters for Ea	ach Material
-------------------------------------	--------------

Material	A	В	С	D	Ε
Number of Parameters	86728	86728	86728	86728	86728


Powering a Sustainable Future

Paderborn – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
1 st	6 th	7.84	1755	Α	

Summary:

- Interesting feature extraction
- Predict B-H curve
- Reverse feature feedback
- Similarity comparison
- Novel and carefully selected neural network architecture
- A good balance for model size/performance

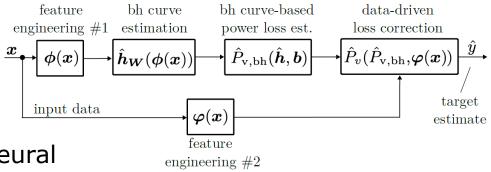


TABLE II FINAL MODEL DELIVERY OVERVIEW

				Relative error	
Material	Parameters	Training	Model size	Average	95-th
		data			quantile
А	1755	2432	43.13 kB	2.34 %	6.20 %
В	1755	7400	43.13 kB	1.10%	2.68%
С	1755	5357	43.13 kB	1.46%	3.70%
D	1755	580	43.13 kB	7.03 %	25.76%
E	1755	2013	43.13 kB	2.51 %	7.10%

PoliTO – Hybrid Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
18 th	3rd	33.78	685.6	Α	

Summary:

- Split input data into different groups and use them to train different part of the models.
- Waveform recognition
- Hybrid NN and Analytical
- Low parameter size
- A bit unclear design logic

	Mean (%)	95 perc (%)	Max (%)
Triangular	0.87	2.19	5.80
Sinusoidal	1.04	2.32	12.11
Trapezoidal CWH	22.6	36.42	40.02
Trapezoidal NN	1.32	3.48	21.02

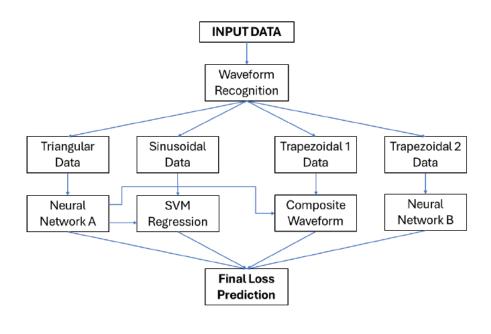
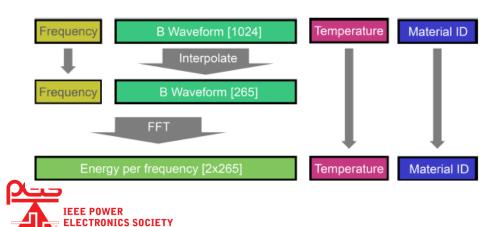


TABLE II NUMBER OF PARAMETERS OF THE SVR FOR EACH MATERIAL

	Α	В	С	D	E	FF
N. parameters	138	288	276	228	138	hnolog

TABLE V Mean value, 95th percentile, and max value of the relative error on the loss prediction for Material B (training set)


SAL – Hybrid Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
23 rd	20 th	378.43	329537	В	

Summary:

Powering a Sustainable Future

- FFT + NN approach
- First process with FFT and then merge/fusion other information
- Perhaps a bug in coding which degraded the performance

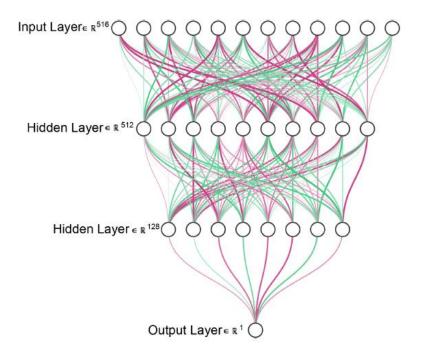
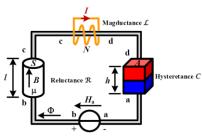


Fig. 4. The image visualizes the optimized neural network architecture with multiple input layers progressively reducing in size, from 516 nodes in the first layer to 512 in the second, and finally 128 nodes in the third layer, before converging to a single output node.

Advancing Technology for Humanity

SEU-MC – Analytical Model


Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
14 th	1 st	29.08	54.8	В	

Summary:

Powering a Sustainable Future

ρ

- Analytical + Curve Fitting
- Very low number of parameters but decent results
- Interesting R/L/C loss separation
- Not fully automated, human tuning needed

$$k_{e} = a_{1}B_{peak}^{3} + b_{1}B_{peak}^{2} + c_{1}B_{peak} + d_{1}$$

$$k_{h} = a_{2}B_{peak}^{3} + b_{2}B_{peak}^{2} + c_{2}B_{peak} + d_{2}$$

$$\chi_{L_{n}} = \frac{k_{e}f_{n}^{2}}{\omega_{n} \|\dot{\Phi}\|^{2}} = \frac{k_{e}f_{n}}{2\pi \|\dot{\Phi}\|^{2}}$$

$$\chi_{C} = \frac{k_{h}f_{n}}{\omega_{n} \|\dot{\Phi}\|^{2}} = \frac{k_{h}}{2\pi \|\dot{\Phi}\|^{2}}$$

$$P = \sum_{\substack{n=-\\1,2,3,\dots}}^{\infty} \sum_{\substack{m=-\\1,2,3,\dots}}^{\infty} (P_{\mathcal{L}} + P_{\mathcal{C}}) = \sum_{\substack{n=-\\1,2,3,\dots}}^{\infty} \sum_{\substack{m=-\\1,2,3,\dots}}^{\infty} (\omega^{2} \mathcal{L}_{mn} \| \dot{\Phi}_{mn} \|^{2} + \frac{\| \dot{\Phi}_{mn} \|^{2}}{C_{mn}})$$
(12)

TABLE I THE NUMBERS OF PARAMETERS FOR EACH OF THE MATERIAL

	Material	Α	В	С	D	Е	_
_	Numbers of parameters	81	56	61	23	53	
<u>els</u>	Model size (Byte)	5125	4421	4542	3255	4404	_ _ ▶IEE
		•	•				Advancing Techno

ncing Technology for Humanity

SEU-WX – NN Method

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
15 th	19 th	30.58	139938	В	

Summary:

- Full NN Approach
- Large Model Size
- Exploration of the NN model can be more systematic

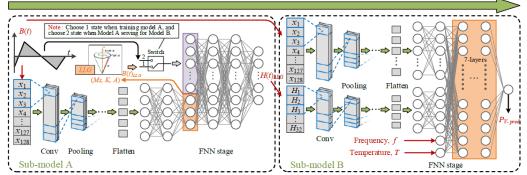
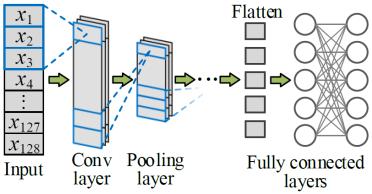
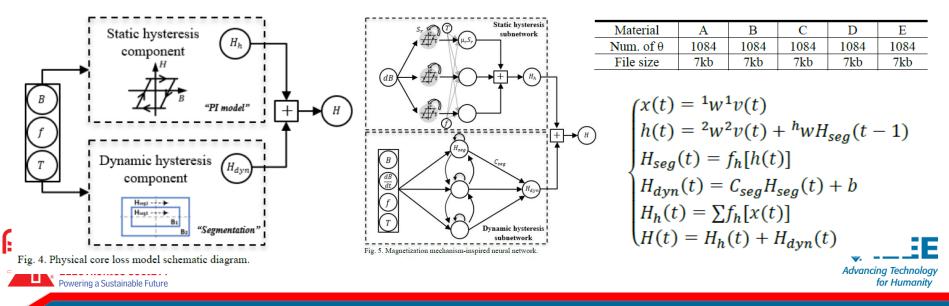



Fig. 4. The framework the proposed PI-MFF-CN method.

F. The Numbers of Parameters of Model

Material	А	В	С	D	Е
Number of Parameters	139938	139938	139938	139938	139938
Model size / KB	(176+385)	(176+385)	(176+385)	(176+385)	(176+385)



Sydney – Hybrid Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
6 th	4 th	13.86	1084	Α	

Summary:

- Predict B-H Loop
- Static hysteresis component + dynamic hysteresis component
- A component independent of frequency and a fixing component depending on f
- Outstanding software engineering

Tribhuvan – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
18 th	21 st	45.60	882228.2	В	

Summary:

- FFT + LSTM + FNN
- Predict B-H Loop
- Only process the first 32 harmonics

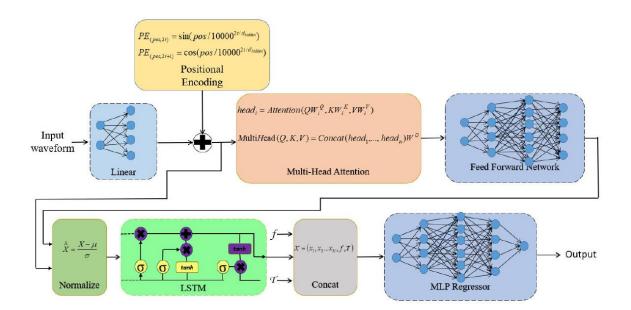
Material Model Layer Total Params File Size LSTM+ Dense 1033729 3.94 MB Α В LSTM+ Dense 3.94 MB 1033729 С LSTM+ Dense 3.94 MB 1033729 D LSTM+ Dense (C to G) 276225 1.09 MB Е LSTM+ Dense 1033729 3.94 MB

TABLE IV

MODEL TOTAL PARAMETERS

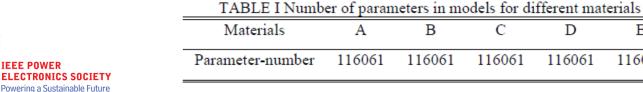
TABLE III Dense Layer Information

Layer	Туре	Neurons	Connected to
Α	Dense	1024	LSTM Out
В	Dense	512	Α
С	Dense	256	В
D	Dense	128	С
E	Dense	64	D
F	Dense	32	E
G	Dense	16	F
Output	Dense	1	G


Tsinghua – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
9 th	17 th	16.87	116061	В	

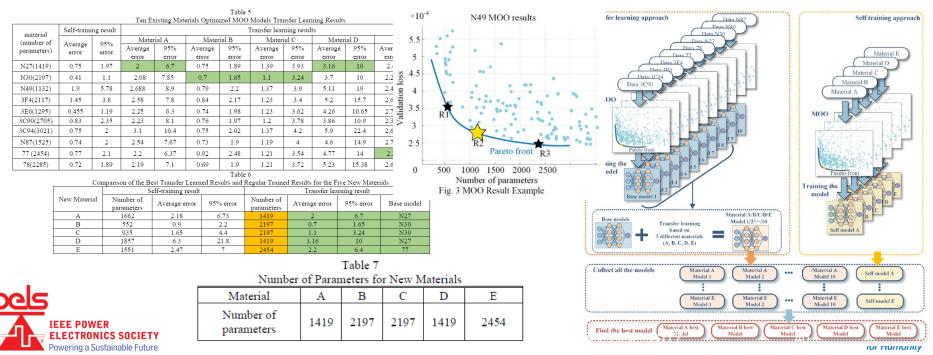
IEEE POWER


- Transformer Type Model
- Simple MLP Structure
- Compared LSTM

D

E

116061



TUDelft – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
4 th	7 th	10.28	1937.2	Α	

Summary:

- NN Approach
- Multi-Objective Optimization
- Cross-material transfer learning for new materials

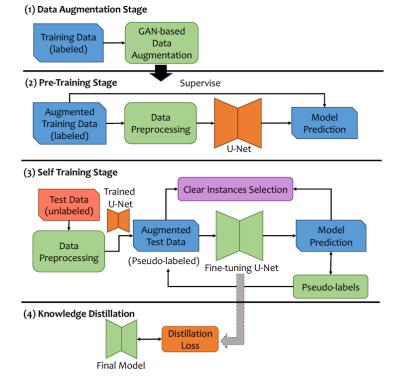
UTK – Hybrid

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
13 th	12 th	41.28	25686.4	Α	

Summary:

EEE POWER

ELECTRONIC


Powering a Susta

- metadata-conditioned U-Net
- Integrating Gated Recurrent Units (GRUs) into a U-net architecture for sequence-to-sequence (seq2seq) generation represents a significant adaptation from its traditional applications. Both the encoder and decoder components of the U-Net are constructed using GRU layers.
- Knowledge Distillation

Material

Number of Parameters

Pure computer science approach

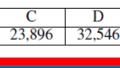


TABLE I

NUMBER OF MODEL PARAMETERS

В

23,000

Α

23.000

Fig. 1. Framework Overview.

Е

25.990

XJTU – NN Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
7 th	11 th	14.21	17342	Α	

Summary:

• The total number of parameters in the model is 7154.

FC

LSTM

Bm

В

Bm

f

Т

FC

Ρ

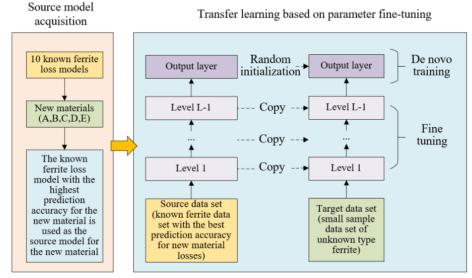
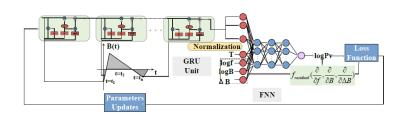
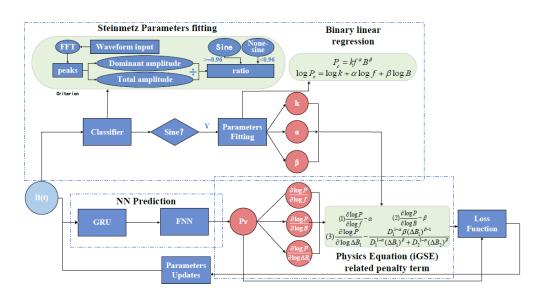


Fig. 4 Prediction of ferrite loss of unknown type based on parametric fine-tuning TL

CNN


B(t)


ZJUI – Hybrid Model

Performance	Model Size	Average	Parameter	Novelty	Software
Rank	Rank	Error [%]	Size (#)	Grade	Engineering
11 th	8 th	35.32	4285	Α	

Summary:

- Sophisticated physics informed machine learning.
- Hybrid GSE and NN.

		TABL	EI	
CO	OMPARISON	S WITH THE PROPOSED PINN	MODEL AND OTHER EXISTING MODELS	
	Model		Test Condition	Γ

Model	Model	odel Applicable Bonge	Test Con	Error (%)	
	Size Applicable Range		Waveform Shape		Temperature
Sequence-scalar[4]	5569	Handle only one temperature	tri.,	25°C	Avg:2.09% Max:14.35%
Sequence-sequence[4]	28481	Handle all waveforms and all temperature	Sine, tri., trape.	25°C,50°C, 70°C,90°C,	Avg: 4.2% Max: 30%
Proposed PINN model	4285	Handle all waveforms and all temperature	Sine, tri., trape.	25°C,50°C, 70°C,90°C,	Avg:1.36% Max:17.8%

