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Magnetic Material Models
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• Magnetics are a bottleneck
o Bulky, expensive, lossy

o Challenging design process

• Soft magnetic core material
o Inductors, transformers, sensors, etc.

o Datasheet: only sinusoidal and incomplete

o Models: inaccurate (up to 100% deviation)

o No accurate first principles model

• Better models are required

[Dartmouth]

[TDK-EPCOS]

[ETHZ]



Complex Material Behavior
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• Nonlinear → Amplitude, waveshape, frequency, temperature

[example for R 22.1×13.7×7.9 N87 core, 7 turns]

Trapezoidal – 300 kHzTriangular – 300 kHzSine – 100 kHz Sine – 500 kHz



MagNet Dataset
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• Large amount of data required
o Automated set-up

o 10 different materials

o Over 500,000 measurements



Part I: Equation-Based Models

Part II: Equation-Based vs. Machine Learning

Part III: Implementation of the iGSE
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Part I:

Equation-Based Models
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State-of-the Art Loss Models

• Trade-off
o Accuracy and versatility

o Complexity

• iGSE: only 3 parameters

• NN: up to 50’000 parameters

• Apple to orange comparison !
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Equation-Based Models

• Equation-based models
o Analytical formulation

o Fully empirical or physics-inspired

o Empirical parameters extracted from measurements

• Steinmetz equation [Steinmetz, 1890]
o Original form without frequency-dependency

o Modified in order to include frequency-dependency

o

o Based on the Steinmetz parameters (𝑘, 𝛼 , and 𝛽)

o Parameters are typically fitted with sinusoidal waveforms

o No dependencies on the waveshape (sine, triangular, trapezoidal, etc.)
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State of the Art

• Improved generalized Steinmetz equation (iGSE) [Venkatachalam, 2002]
o Loss computation for arbitrary waveforms

o Based on the Steinmetz parameters (𝑘, 𝛼 , and 𝛽)

o

• Second derivative based models [Stenglein, 2021]
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o SSLE (3 parameters) o SEFLE (5 parameters)



Composite Waveform Hypothesis

• Composite waveform hypothesis (CWH) [Sullivan, 2010]
o A waveform can be decomposed in segments

o The losses associated with the segments can be computed separately

o Many analytical method relies (explicitly or implicitly) on the CWH

• Triangular waveforms
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Extension to Arbitrary Waveforms

• How to decompose an arbitrary waveform?

o Local equivalent frequency: 

o Property (after loop splitting):
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iGCC Equation

• Improved Generalized Composite Calculation (iGCC)

o Local equivalent frequency :

o Losses of 50% triangular waveforms:

o iGCC integral form:

o iGCC piecewise linear form:

• How to obtain 𝑷𝐬𝐲𝐦 𝒇,𝑩𝐩𝐤𝐩𝐤 ?

o iGCCint. : loss map with interpolation

o iGCCfit. : curve fitting of Steinmetz parameters
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iGCCint. Parametrization

• Loss map with interpolation
o 50% triangular waveforms

o Different frequencies and flux densities

o Advantage: simple and accurate

o Drawback: requires a large dataset

13[example for N87 at 25°C]

• Linear interpolation (in log scale)

• Meas. points are not on a regular grid

• Delaunay triangulation of the points



iGCCfit. Parametrization

• Frequency-dependent Steinmetz parameters

o Expression:

o Fitting of 𝜆 and 𝛽 for different frequencies

o Cubic curve fitting of the obtained values

o Advantage: no extraction of 𝛼 is required

14[example for N87 at 25°C]



Model Performance

• Triangular signals
o N87 material at 25°C

o iGCC is better at extreme duty cycles

o iGCC is better in a wide frequency range

15[example for N87 at 25°C with triangular waveforms]



Model Performance

• Large test dataset
o Extracted from the MagNet dataset

o N87 material, different frequencies, amplitudes, waveshapes, temperatures

o 4720 triangular and trapezoidal signals
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• N87 Material
• 𝑓 ∈ 50, 500 kHz
• 𝐵pkpk ∈ 50, 600 mT

• 𝑇 ∈ 25, 90 °C
• 𝑃 > 5 mW/cm3



Model Performance

• Measurements at 25°C
o iGCC clearly outperform the iGSE, SSLE, and SEFLE

o 95th percentile error below 12%

17[example for N87 at 25°C]



Model Performance

• Impact of the core temperature
o iGCC performs well across the complete range

o 95th percentile error below 13%

18[example for N87 between 25°C and 90°C]



Limitations and/or Opportunities
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• Limitations of the iGSE, iGCC, SSLE, SEFLE
o Relaxation losses are not considered

o Temperature dependencies are not part of the model

o DC biases are not considered (not relevant for the MagNet Challenge)

o Core shape are not considered (not relevant for the MagNet Challenge)

• Equation-based model references
o K. Venkatachalam et. al., “Accurate Prediction of Ferrite Core Loss with Nonsinusoidal

Waveforms using only Steinmetz Parameters,” 2002

o J. Mühlethaler et al., “Improved Core-Loss Calculation for Magnetic Components 
Employed in Power Electronic Systems, 2012

o E. Stenglein et al., “Core Loss Model for Arbitrary Excitations With DC Bias Covering a 
Wide Frequency Range,” 2021

o T. Guillod et al., “Calculation of Ferrite Core Losses with Arbitrary Waveforms using the 
Composite Waveform Hypothesis”, 2023



Part II:

Equation-Based vs. Machine Learning
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Eqn. Models vs. Machine Learning
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• Number of parameters
o Equation-based: 3 – 30 parameters

o Machine learning: 500 – 50000 parameters

• Required dataset
o Equation-based: small datasets (3 – 500 points)

o Machine learning: large datasets (over 1000 points)

• Link with physical phenomena
o Equation-based: relatively easy to achieve

o Machine learning: possible but much more difficult

• Model debuggability and interpretability
o Equation-based: not easy but achievable

o Machine learning: extremely difficult



Eqn. Models vs. Machine Learning
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• Predicting waveshapes that are not in the training/fitting data
o Equation-based: standard for state-of-the-art models (iGSE, iGCC, etc.)

o Machine learning: possible but more difficult and unpredictable

• Extrapolation outside the training/fitting range
o Equation-based: possible but risky

o Machine learning: extremely risky

• Detection of poor dataset quality
o Equation-based: possible but not guaranteed

o Machine learning: difficult (garbage in, garbage out)



Eqn. Models vs. Machine Learning
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• Model versatility (operating conditions, materials, etc.)
o Equation-based: limited to the used equations

o Machine learning: models can “self-adapt” to various conditions

• Possibly to extend the model (DC bias, temperature, etc.)
o Equation-based: require an update of the equations (can be very difficult)

o Machine learning: easy if the model paradigm allows it

• Achieved accuracy
o Equation-based: good but difficult to achieve over wide ranges

o Machine learning: extremely good (same range as the dataset accuracy)

• Dataset pre-processing
o Equation-based: required, dataset should be pre-processed and sorted

o Machine learning: possible to directly use the raw dataset



Using the MagNet Dataset
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• For equation-based models, several pitfalls should be avoided

• Dataset organization
o Pre-processing, filtering, and sorting

o The points are not on a regular grid

o Some points might be missing

• Dataset range
o The dataset range might not be what you want/need

o All the points are between 50 kHz and 500 kHz

▪ N27 material: optimal between 10 kHz and 100 kHz

▪ 3F4 material: optimal between 750 kHz and 2000 kHz

▪ This can be critical for physics-based models



Part III:

Implementation of the iGSE
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Typical Workflow
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Dataset processing, filtering, sorting, and splitting

Parametrize the model using the fitting dataset

Test the model with the evaluation dataset

Original MagNet dataset

Fitting dataset
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iGSE Example
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• Disclaimers
o The goal of this code is to highlight the typical workflow of equation-based models

o The implementation is not meant to be comprehensive and/or accurate

• Assumptions
o Single material measured at ambient temperature

o Only triangular signals are considered

o Simple model parametrization

o Reduced dataset size

• MATLAB implementation
o Code snippets in the slides for the iGSE

o More complete code for the iGSE and iGCC on GitHub

o https://github.com/otvam/magnet_webinar_eqn_models



Main Script
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Step 1: load the datasets

Step 2: fit the model

Step 3: eval. the model

Step 4: save the data



Main Script
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Step 1: load the datasets



Step 1: Load the Datasets
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• Selected material: N87 at 25°C

• Fitting set (346 points)
o Should only contain symmetric triangular signals

o f_vec signal frequencies

o B_pkpk_vec peak-to-peak flux densities

o p_meas_vec measured loss densities (used for fitting)

• Evaluation set (2446 points)
o Could contain any type of piecewise linear waveforms

o f_vec signal frequencies

o d_mat duty cycles defining the piecewise linear waveforms

o B_mat flux densities defining the piecewise linear waveforms

o p_meas_vec measured loss densities (used for comparison)



Main Script
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Step 2: fit the model



Step 2: Fit the Model
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Find the fitting range

Find the optimal fit

Get the model

Get the dataset



Step 2: Fit the Model
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Find the fitting range



Step 2: Find the Range
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• Create a shape representing the fitting range

• Return a function detecting evaluation outside the range



Step 2: Find the Range
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• Find the fitting dataset range

• Detect extrapolation during model evaluation



Step 2: Fit the Model
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Find the optimal fit



Step 2: Find the Optimal Fit

37

• Get a function returning 
the relative errors for 
given fitting parameters

• Find the optimal fitting 
Steinmetz parameters 
with a least-square 
algorithm



Step 2: Fit the Model

38

• Evaluate the performance of the fit



Step 2: Fit the Model
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Get the model



Step 2: Get the Model
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• Compute the gradient of 
the piecewise linear 
segments

• Get the pk-to-pk flux

• Detect extrapolation

• Compute the iGSE
summation for piecewise 
linear signals



Main Script
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Step 3: eval. the model



Step 3: Evaluate the Model
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Evaluate the model

Compute the deviation

Assign the results

Get the dataset



Step 3: Evaluate the Model
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• Evaluate the model performance



Main Script
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Step 4: save the data



Programming Tips
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• Essential for development and debugging
o Display the results and metrics

o Plot the results for the complete dataset

o Plot the results for a single datapoint

• Between the model fitting and the model evaluation
o Minimize the coupling

o Use clear interfaces

• Code performance
o Use vectorized instructions (no loops)

o Downsampling of the waveshapes

o Identify the signals (sine and piecewise linear waveforms)

o Do not overoptimize the code !



Thank you!
Questions?

https://mag-net.princeton.edu/

https://github.com/otvam/magnet_webinar_eqn_models

https://github.com/PrincetonUniversity/magnet

https://github.com/minjiechen/magnetchallenge
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