

2023 MagNet Challenge Webinar: Equation-Based Baseline Models

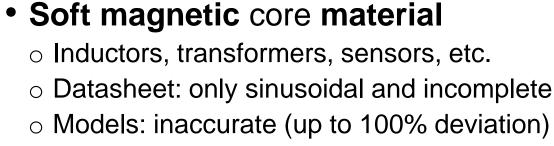
Thomas Guillod

Dartmouth College, USA

IEEE MagNet Challenge Webinar Webinar May 12, 2023

[Dartmouth] [ETHZ] SIFERRIT materials Relative core losses Relative core losses versus AC field flux density versus temperature (measured on R34 toroids) measured on R34 toroids) = 100 kHz kW/m 100 mT mΤ

ITDK-EPCOS



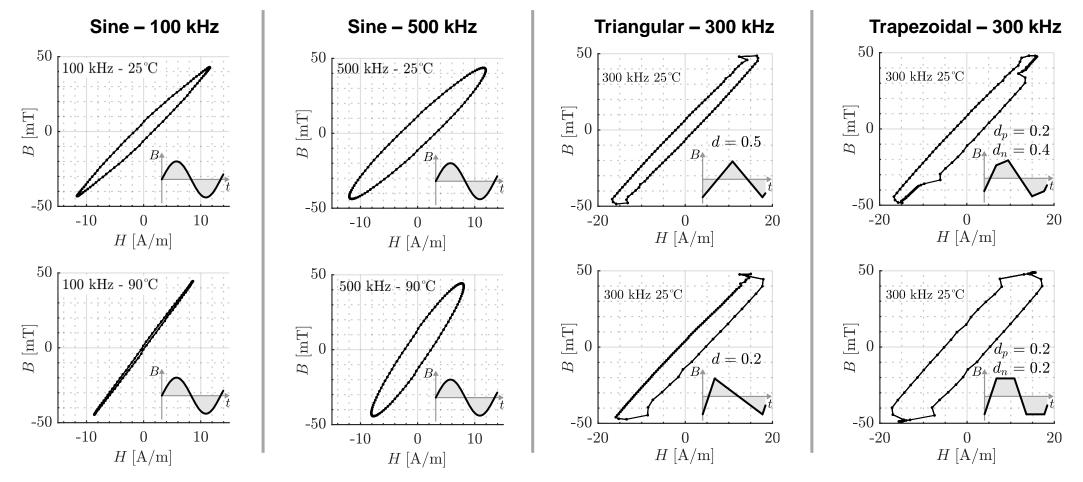
- No accurate first principles model
- Better models are required

Magnetics are a bottleneck

- o Bulky, expensive, lossy
- Challenging design process

DARTMOUTH ENGINEERING **Magnetic Material Models**

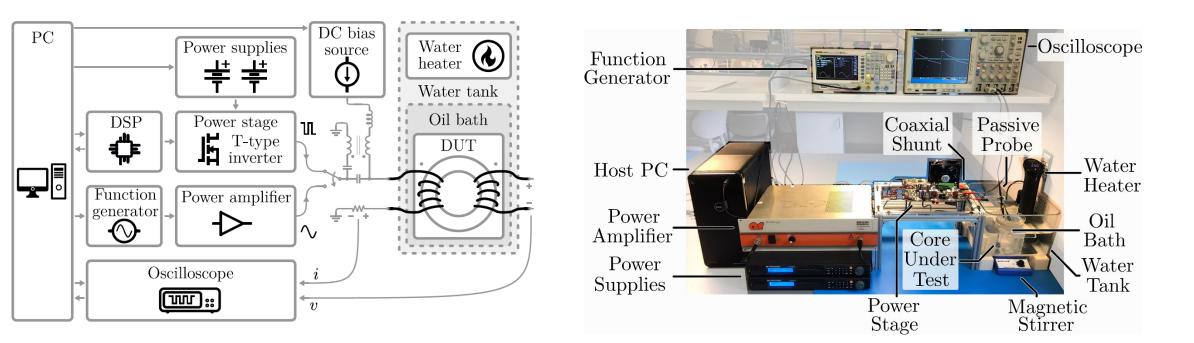
• Nonlinear -> Amplitude, waveshape, frequency, temperature



[example for R 22.1×13.7×7.9 N87 core, 7 turns]

MagNet Dataset

- Large amount of data required
 - Automated set-up
 - o 10 different materials
 - o Over 500,000 measurements

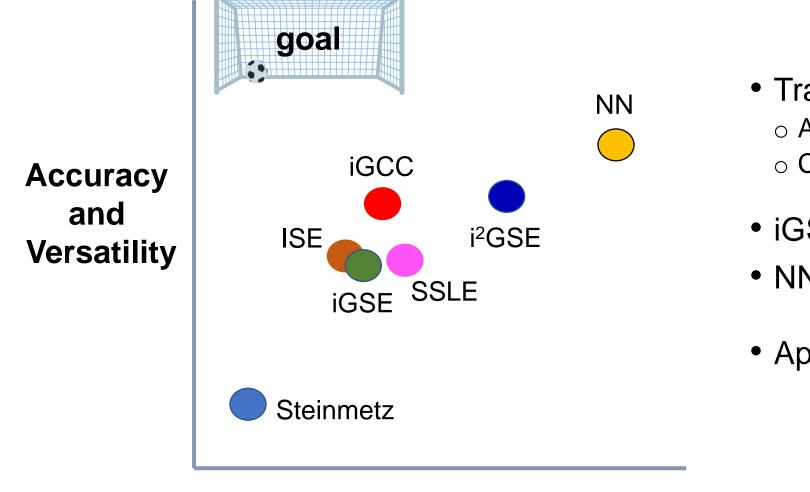


Part I: Equation-Based Models

Part II: Equation-Based vs. Machine Learning

Part III: Implementation of the iGSE

Part I: Equation-Based Models



- Trade-off

 Accuracy and versatility
 Complexity
- iGSE: only 3 parameters
- NN: up to 50'000 parameters
- Apple to orange comparison !

Equation-based models

Analytical formulation

 $\circ\,$ Fully empirical or physics-inspired

 $_{\odot}$ Empirical parameters extracted from measurements

• Steinmetz equation [Steinmetz, 1890]

Original form without frequency-dependency
 Modified in order to include frequency-dependency

 $\circ P = k f^{\alpha} B^{\beta}_{\rm pkpk}$

 \circ Based on the Steinmetz parameters (k, α , and β)

- Parameters are typically fitted with sinusoidal waveforms
- \circ No dependencies on the waveshape (sine, triangular, trapezoidal, etc.)

• Improved generalized Steinmetz equation (iGSE) [Venkatachalam, 2002]

- $_{\odot}$ Loss computation for arbitrary waveforms
- \circ Based on the Steinmetz parameters (k, α , and β)

$$\circ P = \frac{1}{T} \int_0^T k \left| \frac{\mathrm{d}B}{\mathrm{d}t} \right|^\alpha (B_{\mathrm{pkpk}})^{\beta - \alpha} \mathrm{d}t$$

- Second derivative based models [Stenglein, 2021]
 - SSLE (3 parameters)

• SEFLE (5 parameters)

$$P = kf \left(f_{\rm eq}\right)^{\alpha - 1} B_{\rm pkpk}^{\beta}$$
$$f_{\rm eq} = \frac{1}{4\pi B_{\rm pkpk}} \int_0^T \left|\frac{{\rm d}^2 B}{{\rm d}t^2}\right| {\rm d}t$$

$$P = W_{\text{hyst}} f_{\text{eff}},$$

$$W_{\text{hyst}} = a_1 B_{\text{pkpk}} + a_2 B_{\text{pkpk}}^2 + a_3 B_{\text{pkpk}}^3$$

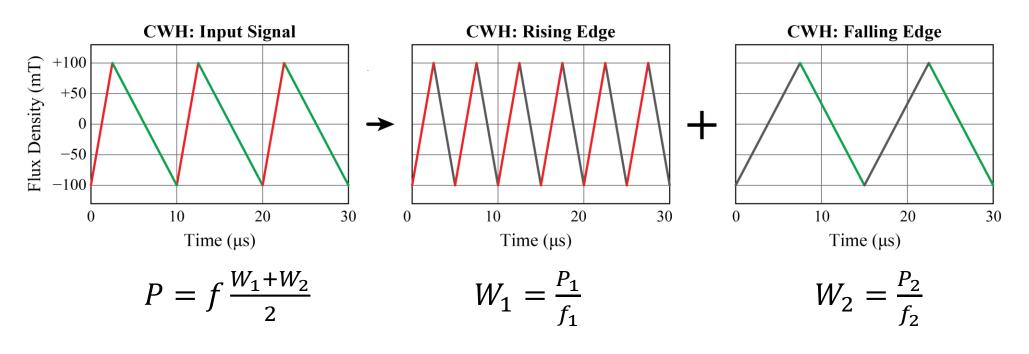
$$f_{\text{eff}} = f \left(1 + c \left(\frac{1}{B_{\text{pkpk}}} \int_0^T \left| \frac{\mathrm{d}^2 B}{\mathrm{d} t^2} \right| \, \mathrm{d} t \right)^\gamma \right)$$

Composite Waveform Hypothesis

Composite waveform hypothesis (CWH) [Sullivan, 2010]

- A waveform can be decomposed in segments
- The losses associated with the segments can be computed separately
- Many analytical method relies (explicitly or implicitly) on the CWH

Triangular waveforms

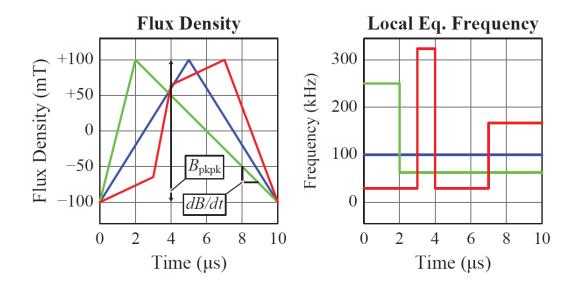


How to decompose an arbitrary waveform?

• Local equivalent frequency: $\widetilde{f}(t) = \frac{1}{2} \frac{\left|\frac{\mathrm{d}B}{\mathrm{d}t}\right|}{R}$

 \circ Property (after loop splitting):

$$\int_{0}^{T} \widetilde{f}(t) \, \mathrm{d}t = 1$$



Mag / et

• Improved Generalized Composite Calculation (iGCC)

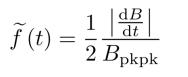
- \circ Local equivalent frequency :
- Losses of 50% triangular waveforms:

DARTMOUTH iGCC Equation

- iGCC integral form:
- $_{\odot}$ iGCC piecewise linear form:
- How to obtain $P_{\text{sym}}(f, B_{\text{pkpk}})$?
 - iGCC_{int.}: loss map with interpolation
 iGCC_{fit.}: curve fitting of Steinmetz parameters

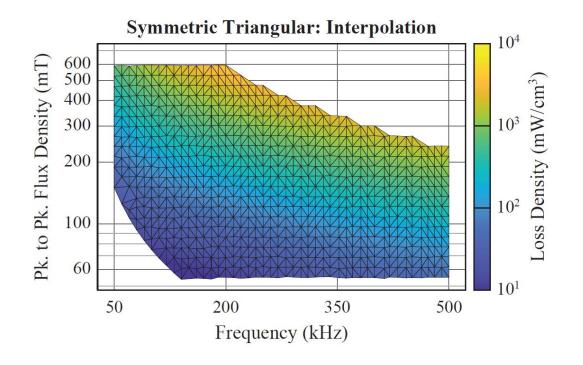
 $P_{
m sym}\left(f,B_{
m pkpk}
ight)$

$$P = \frac{1}{T} \int_0^T P_{\text{sym}} \left(\tilde{f}(t), B_{\text{pkpk}} \right) dt$$
$$P = f \sum_{i \models 1}^n P_{\text{sym}} \left(\frac{1}{2} \frac{\left| \frac{\Delta B_i}{\Delta t_i} \right|}{B_{\text{pkpk}}}, B_{\text{pkpk}} \right) \Delta t_i$$



Loss map with interpolation

- \circ 50% triangular waveforms
- $_{\odot}$ Different frequencies and flux densities
- Advantage: simple and accurate
- Drawback: requires a large dataset



- Linear interpolation (in log scale)
- Meas. points are not on a regular grid
- Delaunay triangulation of the points

Mag 4

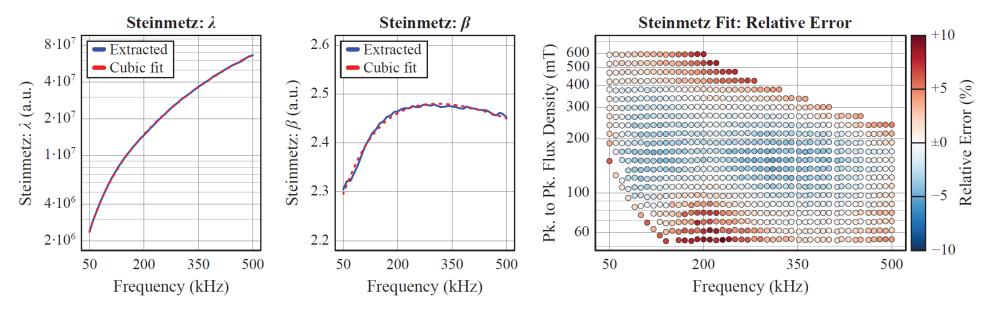
et

• Frequency-dependent Steinmetz parameters

• Expression: $P_{\text{sym}}(f, B_{\text{pkpk}}) = \lambda(f) B_{\text{pkpk}}^{\beta(f)}$

 \circ Fitting of λ and β for different frequencies

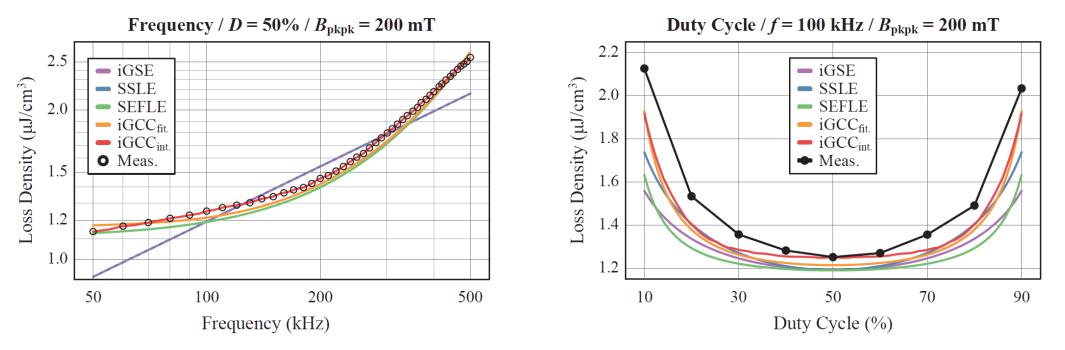
- $_{\odot}$ Cubic curve fitting of the obtained values
- \circ Advantage: no extraction of α is required



Mag

• Triangular signals

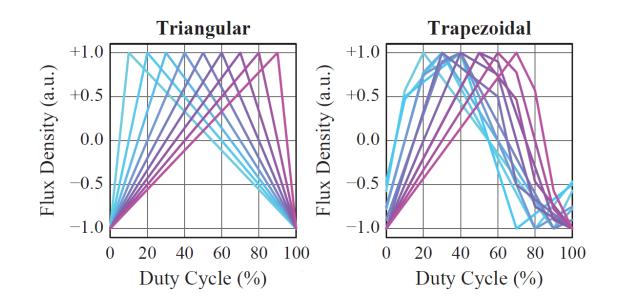
- N87 material at 25°C
- \circ iGCC is better at extreme duty cycles
- $_{\odot}$ iGCC is better in a wide frequency range



Mag **/**et

• Large test dataset

- $_{\odot}$ Extracted from the MagNet dataset
- o N87 material, different frequencies, amplitudes, waveshapes, temperatures
- $_{\odot}$ 4720 triangular and trapezoidal signals



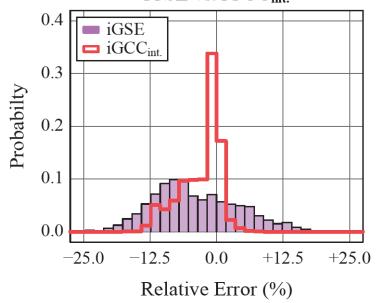
- N87 Material
- *f* ∈ [50, 500] kHz
- $B_{pkpk} \in [50, 600] \text{ mT}$
- *T* ∈ [25,90] °C
- $P > 5 \text{ mW/cm}^3$

Mag // et

Measurements at 25°C

 $_{\odot}$ iGCC clearly outperform the iGSE, SSLE, and SEFLE

 $\,\circ\,$ 95 th percentile error below 12%



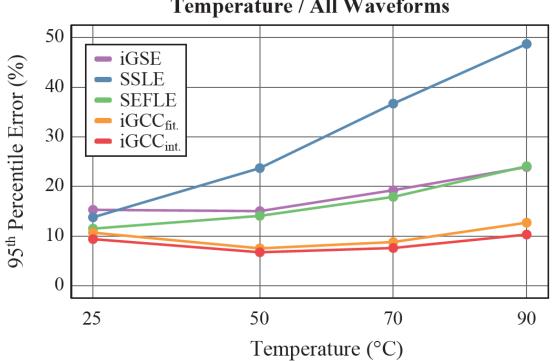
iGSE vs.	iGCC _{int.}
----------	----------------------

Model	Avg.	RMS	95 th pct.	Max.
iGSE	7.5%	9.0%	16.2%	27.7%
SSLE	6.0%	7.4%	14.3%	20.8%
SEFLE	5.4%	6.6%	12.4%	26.1%
iGCC _{fit.}	4.7%	5.9%	11.9%	16.9%
iGCC _{int.}	3.3%	4.8%	11.1%	16.9%

Impact of the core temperature

o iGCC performs well across the complete range

○ 95th percentile error below 13%



Temperature / All Waveforms

Mag **/**et

- Limitations of the iGSE, iGCC, SSLE, SEFLE
 - $_{\odot}$ Relaxation losses are not considered
 - Temperature dependencies are not part of the model
 - DC biases are not considered (not relevant for the MagNet Challenge)
 - Core shape are not considered (not relevant for the MagNet Challenge)

Equation-based model references

- K. Venkatachalam et. al., "Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms using only Steinmetz Parameters," 2002
- J. Mühlethaler et al., "Improved Core-Loss Calculation for Magnetic Components Employed in Power Electronic Systems, 2012
- E. Stenglein et al., "Core Loss Model for Arbitrary Excitations With DC Bias Covering a Wide Frequency Range," 2021
- T. Guillod et al., "Calculation of Ferrite Core Losses with Arbitrary Waveforms using the Composite Waveform Hypothesis", 2023

Part II: Equation-Based vs. Machine Learning

21

et

Mag

EXAMPLE 1 Eqn. Models vs. Machine Learning

- Number of parameters
 - Equation-based: 3 30 parameters
 Machine learning: 500 50000 parameters

Required dataset

Equation-based: small datasets (3 – 500 points)
Machine learning: large datasets (over 1000 points)

Link with physical phenomena

Equation-based: relatively easy to achieve
Machine learning: possible but much more difficult

Model debuggability and interpretability

Equation-based: not easy but achievable
Machine learning: extremely difficult

Eqn. Models vs. Machine Learning

- Predicting waveshapes that are not in the training/fitting data
 - Equation-based: standard for state-of-the-art models (iGSE, iGCC, etc.)
 - Machine learning: possible but more difficult and unpredictable

Extrapolation outside the training/fitting range

o Equation-based: possible but riskyo Machine learning: extremely risky

Detection of poor dataset quality

Equation-based: possible but not guaranteed
Machine learning: difficult (garbage in, garbage out)

- Model versatility (operating conditions, materials, etc.)
 - Equation-based: limited to the used equations
 Machine learning: models can "self-adapt" to various conditions
- Possibly to extend the model (DC bias, temperature, etc.)

Equation-based: require an update of the equations (can be very difficult)
 Machine learning: easy if the model paradigm allows it

Achieved accuracy

Equation-based: good but difficult to achieve over wide ranges
Machine learning: extremely good (same range as the dataset accuracy)

Dataset pre-processing

• Equation-based: required, dataset should be pre-processed and sorted

Machine learning: possible to directly use the raw dataset

DARTMOUTH ENGINEERING Using the MagNet Dataset

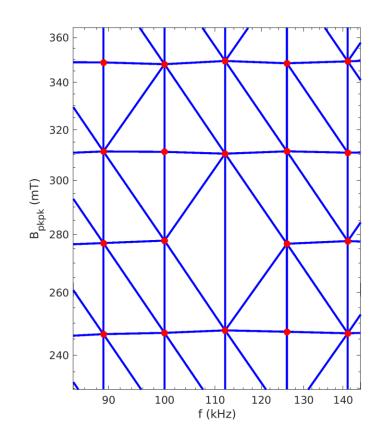
For equation-based models, several pitfalls should be avoided

Dataset organization

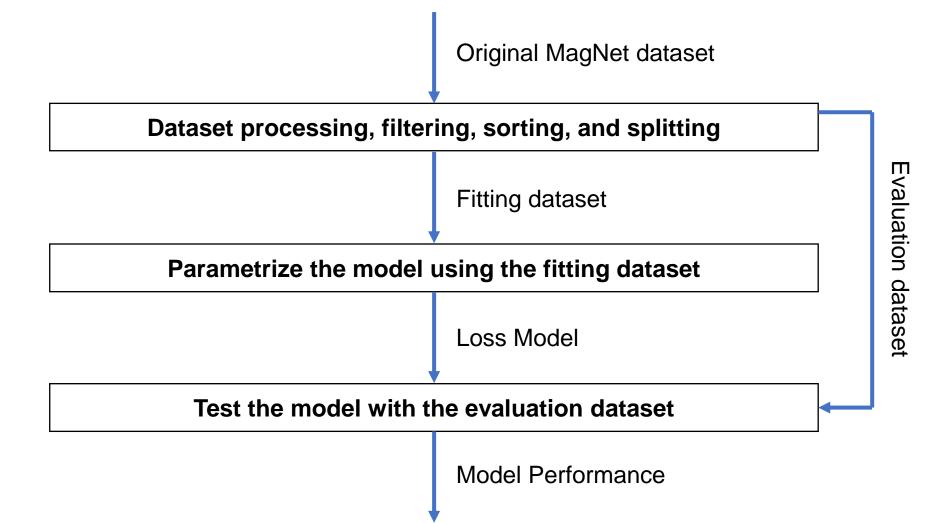
- Pre-processing, filtering, and sorting
- o The points are not on a regular grid
- Some points might be missing

Dataset range

- The dataset range might not be what you want/need
- $_{\odot}$ All the points are between 50 kHz and 500 kHz
 - N27 material: optimal between 10 kHz and 100 kHz
 - 3F4 material: optimal between 750 kHz and 2000 kHz
 - This can be critical for physics-based models



Part III: Implementation of the iGSE



• Disclaimers

- The goal of this code is to highlight the typical workflow of equation-based models
- The implementation is **not** meant to be **comprehensive and/or accurate**

Assumptions

- o Single material measured at ambient temperature
- o Only triangular signals are considered
- Simple model parametrization
- Reduced dataset size

MATLAB implementation

- Code snippets in the slides for the iGSE
- More complete code for the iGSE and iGCC on GitHub
- o https://github.com/otvam/magnet_webinar_eqn_models

<pre>function run_igse() % Parametrize and evaluate the iGSE loss model.</pre>	
<pre>% load the fitting and evaluation sets map_fit = load('data/N87_25C_fit.mat'); map_eval = load('data/N87_25C_eval.mat');</pre>	Step 1: load the datasets
% parametrize the loss model with the loss map fct_model = get_model(map_fit);	Step 2: fit the model
% evaluate a loss model and compare the results map_eval = get_eval(map_eval, fct_model);	Step 3: eval. the model
<pre>% save the results save('data/N87_25C_res.mat', '-struct', 'map_eval');</pre>	Step 4: save the data

function run_igse() % Parametrize and evaluate the iGSE loss model.	
<pre>% load the fitting and evaluation sets map_fit = load('data/N87_25C_fit.mat'); map_eval = load('data/N87_25C_eval.mat');</pre>	Step 1: load the datasets
% parametrize the loss model with the loss map fct_model = get_model(map_fit);	
% evaluate a loss model and compare the results map_eval = get_eval(map_eval, fct_model);	
<pre>% save the results save('data/N87_25C_res.mat', '-struct', 'map_eval');</pre>	

Selected material: N87 at 25°C

• Fitting set (346 points)

Should only contain symmetric triangular signals

DARTMOUTH ENGINEERING Step 1: Load the Datasets

- f_vec signal frequencies
- B_pkpk_vec
 peak-to-peak flux densities
- p_meas_vec
 measured loss densities (used for fitting)

• Evaluation set (2446 points)

- Could contain any type of piecewise linear waveforms
- f_vec signal frequencies
- d_mat
 duty cycles defining the piecewise linear waveforms
- B_mat flux densities defining the piecewise linear waveforms
- o p_meas_vec measured loss densities (used for comparison)

Field ∠	Value
B_pkpk_vec	1x346 double
🕂 f_vec	1x346 double
🖶 p_meas_vec	1x346 double

Field △	Value
🗄 B_mat	3x2446 double
Η d_mat	3x2446 double
Η f_vec	1x2446 double
Η p_meas_vec	1x2446 double

• • •	
<pre>function run_igse() % Parametrize and evaluate the iGSE loss model.</pre>	
<pre>% load the fitting and evaluation sets map_fit = load('data/N87_25C_fit.mat'); map_eval = load('data/N87_25C_eval.mat');</pre>	
<pre>% parametrize the loss model with the loss map fct_model = get_model(map_fit);</pre>	Step 2: fit the model
<pre>% evaluate a loss model and compare the results map_eval = get_eval(map_eval, fct_model);</pre>	
<pre>% save the results save('data/N87_25C_res.mat', '-struct', 'map_eval');</pre>	
end	

MagQet

•••

function fct_model = get_model(map_fit)
% Parametrize a loss model (iGSE or iGCC) with a measured loss map.

f_vec = map_fit.f_vec; B_pkpk_vec = map_fit.B_pkpk_vec; p_meas_vec = map_fit.p_meas_vec;

% extract the range (frequency and flux density) of the loss map fct_range = get_range(f_vec, B_pkpk_vec);

% fit the parametrized fitting function with the provided data
param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec);

% get a function handle describing the fitted loss model fct_model = @(f_vec, d_mat, B_mat) get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit); Get the dataset

Find the fitting range

Find the optimal fit

Get the model

•••

function fct_model = get_model(map_fit)
% Parametrize a loss model (iGSE or iGCC) with a measured loss map.

f_vec = map_fit.f_vec; B_pkpk_vec = map_fit.B_pkpk_vec; p_meas_vec = map_fit.p_meas_vec;

% extract the range (frequency and flux density) of the loss map fct_range = get_range(f_vec, B_pkpk_vec);

% fit the parametrized fitting function with the provided data
param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec);

% get a function handle describing the fitted loss model fct_model = @(f_vec, d_mat, B_mat) get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit); Find the fitting range


```
function fct_range = get_range(f_vec, B_pkpk_vec)
% Extract the range (frequency and flux density) of a loss map.
% alpha padius (see alphaShapa _ LTnfl for full triangulation)
```

```
% alpha radius (see alphaShape, 'Inf' for full triangulation)
alpha = 0.2;
```

```
% shape object describing the loss map range
shp_obj = alphaShape(log10(f_vec).', log10(B_pkpk_vec).', alpha);
```

```
% function testing if query points are within the loss map range
fct_range = @(f, B_pkpk) shp_obj.inShape(log10(f), log10(B_pkpk));
```

end

- Create a shape representing the fitting range
- Return a function detecting evaluation outside the range

. . . .

function fct_model = get_model(map_fit)
% Parametrize a loss model (iGSE or iGCC) with a measured loss map.

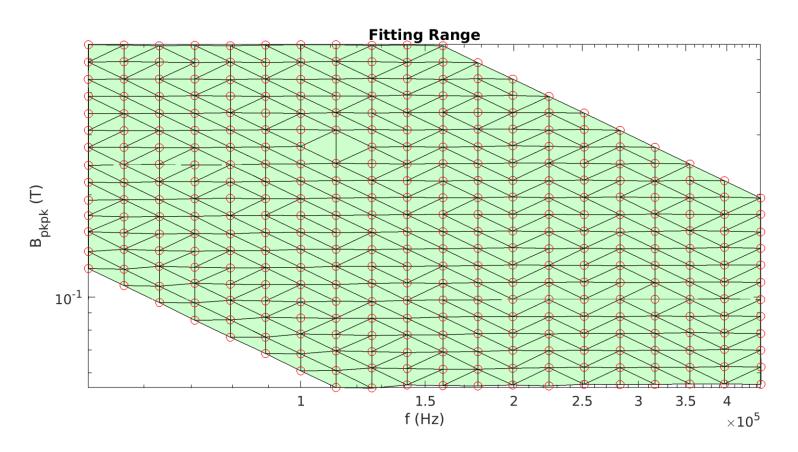
f_vec = map_fit.f_vec; B_pkpk_vec = map_fit.B_pkpk_vec; p_meas_vec = map_fit.p_meas_vec;

% extract the range (frequency and flux density) of the loss map fct_range = get_range(f_vec, B_pkpk_vec);

% fit the parametrized fitting function with the provided data param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec);

% get a function handle describing the fitted loss model fct_model = @(f_vec, d_mat, B_mat) get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit);

- Find the fitting dataset range
- Detect extrapolation during model evaluation



Mag **/**et

•••

function fct_model = get_model(map_fit)
% Parametrize a loss model (iGSE or iGCC) with a measured loss map.

f_vec = map_fit.f_vec; B_pkpk_vec = map_fit.B_pkpk_vec; p_meas_vec = map_fit.p_meas_vec;

% extract the range (frequency and flux density) of the loss map fct_range = get_range(f_vec, B_pkpk_vec);

% fit the parametrized fitting function with the provided data param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec);

% get a function handle describing the fitted loss model fct_model = @(f_vec, d_mat, B_mat) get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit); Find the optimal fit

Mag // et

DARTMOUTH ENGINEERING Step 2: Find the Optimal Fit

•••

function param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec)
% Extraction of a least-square fit of a function with respect to a loss map.

% get the initial value vector x0 = [0.0, 0.0, 0.0];

```
% function evaluating the fit function for given parameters
fct_eval = @(x) x(1).*(f_vec.^x(2)).*(B_pkpk_vec.^x(3));
```

% function describing the relative error between the fits and the measurements
fct_fun = @(x) (fct_eval(x)-p_meas_vec)./p_meas_vec;

```
% get the options for the least-square fitting algoritm
fit_options = struct('FunctionTolerance', 1e-6, 'Display', 'off');
```

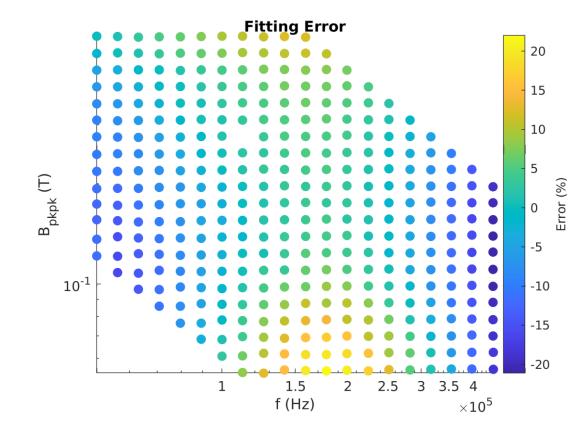
% solve the fitting problem with a least-square fitting algoritm x = lsqnonlin(fct_fun, x0, [], [], fit_options);

```
% extract the fitted parameters
param_fit = cell2struct(num2cell(x.'), {'k', 'alpha', 'beta'});
```

function fct_model = get_model(map_fit)
% Parametrize a loss model (i6SE or i6CC) with a measured loss map.
f_vec = map_fit.f_vec;
B_pkpk_vec = map_fit.B_pkpk_vec;
p_meas_vec = map_fit.p_meas_vec;
% extract the range (frequency and flux density) of the loss map
fct_range = get_range(f_vec, B_pkpk_vec);
% fit the parametrized fitting function with the provided data
param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec);
% get a function handle describing the fitted loss model
fct_model = @(f_vec, d_mat, B_mat) get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit);
end

- Get a function returning the relative errors for given fitting parameters
- Find the optimal fitting Steinmetz parameters with a least-square algorithm

• Evaluate the performance of the fit




```
errors
    n_points = 346
    err_mean = 6.920 %
    err_rms = 8.646 %
    err_95th = 18.161 %
    err_max = 22.032 %
parameters
    k = 1.397e+00
    alpha = 1.332e+00
    beta = 2.423e+00
```

Mag **/**et

•••

function fct_model = get_model(map_fit)
% Parametrize a loss model (iGSE or iGCC) with a measured loss map.

f_vec = map_fit.f_vec; B_pkpk_vec = map_fit.B_pkpk_vec; p_meas_vec = map_fit.p_meas_vec;

% extract the range (frequency and flux density) of the loss map fct_range = get_range(f_vec, B_pkpk_vec);

% fit the parametrized fitting function with the provided data
param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec);

% get a function handle describing the fitted loss model fct_model = @(f_vec, d_mat, B_mat) get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit);

Get the model

function [valid_vec, p_model_vec] = get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit)
% Definition of the iGSE model.

k = param_fit.k; alpha = param_fit.alpha; beta = param_fit.beta;

% compute the duration and gradient of the segments dd_mat = diff(d_mat, 1, 1); dB_mat = diff(B_mat, 1, 1); dB_dt_mat = f_vec.*(dB_mat./dd_mat);

% extract the peak-to-peak flux densities
B_pkpk_vec = max(B_mat, [], 1)-min(B_mat, [], 1);

% check which points are within the fitting range valid_vec = fct_range(f_vec, B_pkpk_vec);

% compute the iGSE integral (for piecewise linear waveforms)
w_mat = (k./(2.^alpha)).*(B_pkpk_vec.^(beta-alpha)).*(abs(dB_dt_mat).^alpha);
p_model_vec = sum(dd_mat.*w_mat, 1);

•••

function fct_model = get_model(map_fit)
% Parametrize a loss model (i6SE or i6CC) with a measured loss map

f_vec = map_fit.f_vec; B_pkpk_vec = map_fit.B_pkpk_vec; p_meas_vec = map_fit.p_meas_vec;

% extract the range (frequency and flux density) of the loss map fct_range = get_range(f_vec, B_pkpk_vec);

% fit the parametrized fitting function with the provided dat param_fit = get_igse_fit(f_vec, B_pkpk_vec, p_meas_vec);

% get a function handle describing the fitted loss model fct_model = @(f_vec, d_mat, B_mat) get_igse_model(f_vec, d_mat, B_mat, fct_range, param_fit);

- Compute the gradient of the piecewise linear segments
- Get the pk-to-pk flux
- Detect extrapolation
- Compute the iGSE summation for piecewise linear signals

<pre>function run_igse() % Parametrize and evaluate the iGSE loss model.</pre>	
<pre>% load the fitting and evaluation sets map_fit = load('data/N87_25C_fit.mat'); map_eval = load('data/N87_25C_eval.mat'); % parametrize the loss model with the loss map</pre>	
<pre>fct_model = get_model(map_fit); % evaluate a loss model and compare the results map_eval = get_eval(map_eval, fct_model);</pre>	Step 3: eval. the model
<pre>% save the results save('data/N87_25C_res.mat', '-struct', 'map_eval');</pre>	
end	

Step 3: Evaluate the Model

function map_eval = get_eval(map_eval, fct_model)
% Evaluate a loss model and compare the results with the measurements.

f_vec = map_eval.f_vec; d_mat = map_eval.d_mat; B_mat = map_eval.B_mat; p_meas_vec = map_eval.p_meas_vec;

```
% evaluate the loss model
[valid_vec, p_model_vec] = fct_model(f_vec, d_mat, B_mat);
```

% compute the relative error between the loss model and the measurements
err_model_vec = (p_model_vec-p_meas_vec)./p_meas_vec;

% add the predicted losses to the loss map map_eval.valid_vec = valid_vec; map_eval.p_model_vec = p_model_vec; map_eval.err_model_vec = err_model_vec;

end

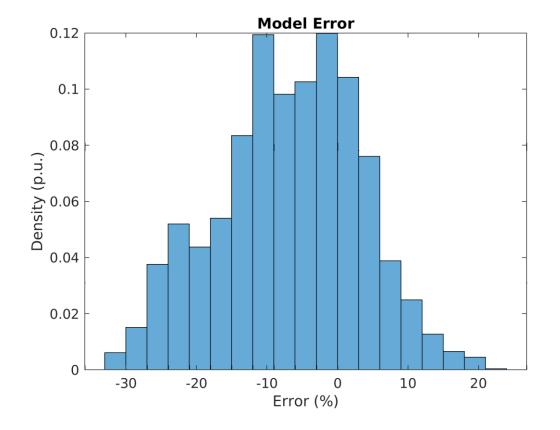
Get the dataset

Evaluate the model

Compute the deviation

Assign the results

• Evaluate the model performance



eval all points n points = 2446err mean = 9.642 % err rms = 12.195 % err 95th = 24.498 % err max = 32.038 % valid points n points = 2279 err mean = 9.510 % err rms = 12.139 % err 95th = 24.632 % err max = 32.038 % invalid points n points = 167err mean = 11.439 % err rms = 12.934 % err 95th = 20.696 % err max = 22.796 %

Mag / et

<pre>function run_igse() % Parametrize and evaluate the iGSE loss model.</pre>	
<pre>% load the fitting and evaluation sets map_fit = load('data/N87_25C_fit.mat'); map_eval = load('data/N87_25C_eval.mat');</pre>	
<pre>% parametrize the loss model with the loss map fct_model = get_model(map_fit);</pre>	
<pre>% evaluate a loss model and compare the results map_eval = get_eval(map_eval, fct_model);</pre>	
% save the results <pre>save('data/N87_25C_res.mat', '-struct', 'map_eval');</pre>	Step 4: save the data

end

44

• Essential for development and debugging

- $_{\odot}$ Display the results and metrics
- $\circ\,$ Plot the results for the complete dataset
- \circ Plot the results for a single datapoint

• Between the model fitting and the model evaluation

Minimize the coupling
Use clear interfaces

Code performance

- Use vectorized instructions (no loops)
- Downsampling of the waveshapes
- o Identify the signals (sine and piecewise linear waveforms)
- o Do not overoptimize the code !

Thank you! Questions?

https://mag-net.princeton.edu/

https://github.com/otvam/magnet_webinar_eqn_models

https://github.com/PrincetonUniversity/magnet

https://github.com/minjiechen/magnetchallenge